terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

Abstract

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

 

The objective of this work is to know the agronomic and oenological suitability of the minority variety Mandón (Garró) on two rootstocks, 110-R and 3309-C in the DO Arribes. The study was carried out in the 2014-2019 period in a trial located in the town of Villarino de los Aires (Sa). The vines have been trained on a trellis, NNE-SSO orientation and bilateral Royat cordon formation. The plot soil, characteristic of the D.O. Arribes is slightly acidic, shallow, with a loamy-sandy texture and low in organic matter.

 

The results show that the vegetative development of Mandón on 110-R indicates that it is more vigorous than 3309-C, with a higher weight of pruning wood and vine shoots. In the trend of this vigor, the 110-R rootstock is slightly more productive than the 3309-C, showing a greater number of clusters per vine and higher yield, although with somewhat smaller berries. The berry quality parameters indicated that the 3309-C rootstock reaches a probable alcoholic degree and a total acidity higher than 110-R. The results reveal that the Mandón variety obtains a better adaptation and conjunction with the 110-R rootstock than with 3309-C, with a better behavior in slightly acid soil, showing overall better vegetative and productive balance with a berry good quality.  

Acknowledgements: Thanks to the financial support of the Junta de Castilla y León (Spain), ITACyL, and the VARMINVID project(FEADER funds). Thanks to Villarino de los Aires Town Hall for its contribution and their help in the vineyard operations.  

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

J.A. Rubio1, A. Martín1, S. Vélez2, E. Barajas1

1 Instituto Tecnológico Agrario de Castilla y León (ITACyL). Valladolid, España
2 Information Technology Group. Wageningen University & Research (WUR). Wageningen. Gelderland. Netherlands

Contact the author*

Keywords

110-Richter, 3309-Couderc, berry quality parameters, minority variety, vigor

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

Metatranscriptomic analysis of “aszú” berries: the potential role of the most important species of the grape microbiota in the aroma of wines with noble rot

Botrytis cinerea has more than 1200 host plants and is one of the most important plant pathogens in viticulture. Under certain environmental conditions, it can lead to the development of a noble rot, which results in a specific metabolic profile, altering physical texture and chemical composition. The other microbes involved in this process and their functional genes are poorly characterised. We have generated metatranscriptomic [1,2] and DNA metabarcoding data from three months of the Furmint grape variety, representing the four phases of noble rot, from healthy berries to completely dried berries.

Defoliation combined with exogenous ABA application results in slower ripening and improved anthocyanin profile

Reducing sugar accumulation in grape (Vitis vinifera L.) berries may be a way to mitigate the effect of climate change. Managing canopy and crop load is an effective way to do so, however, reducing canopy size has been demonstrated to induce undesirable effects on anthocyanins. The aim of this study was to test if an application of exogenous ABA on the grape berries of defoliated vines (⅔ of the leaves removed) can result in slower sugar accumulation while maintaining grape and wine quality. An experiment with defoliation and exogenous ABA application on directly on clusters (factorial design 2×2) was performed with ‘Tempranillo’ fruit-bearing cuttings.

Accumulation of deleterious mutations in grapevine and its relationship with traits of interest for wine production and resilience

Deleterious mutations that severely reduce population fitness are rapidly removed from the gene pool by purifying selection. However, evolutionary drivers such as genetic drift brought about by demographic bottlenecks may comprise its efficacy by allowing deleterious mutations to accumulate, thereby limiting the adaptive potential of populations. Moreover, positive selection can hitchhike mildly deleterious mutations due to linkage caused by lack of recombination. Similarly, in the context of species domestication, artificial selection mimics these evolutionary processes, which can have undesirable consequences for production and resilience. In this study, we evaluated the extent of the accumulation of deleterious mutations and the magnitude of their effects (also known as genetic load) at the whole-genome scale for ca.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.