terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

Abstract

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

 

The objective of this work is to know the agronomic and oenological suitability of the minority variety Mandón (Garró) on two rootstocks, 110-R and 3309-C in the DO Arribes. The study was carried out in the 2014-2019 period in a trial located in the town of Villarino de los Aires (Sa). The vines have been trained on a trellis, NNE-SSO orientation and bilateral Royat cordon formation. The plot soil, characteristic of the D.O. Arribes is slightly acidic, shallow, with a loamy-sandy texture and low in organic matter.

 

The results show that the vegetative development of Mandón on 110-R indicates that it is more vigorous than 3309-C, with a higher weight of pruning wood and vine shoots. In the trend of this vigor, the 110-R rootstock is slightly more productive than the 3309-C, showing a greater number of clusters per vine and higher yield, although with somewhat smaller berries. The berry quality parameters indicated that the 3309-C rootstock reaches a probable alcoholic degree and a total acidity higher than 110-R. The results reveal that the Mandón variety obtains a better adaptation and conjunction with the 110-R rootstock than with 3309-C, with a better behavior in slightly acid soil, showing overall better vegetative and productive balance with a berry good quality.  

Acknowledgements: Thanks to the financial support of the Junta de Castilla y León (Spain), ITACyL, and the VARMINVID project(FEADER funds). Thanks to Villarino de los Aires Town Hall for its contribution and their help in the vineyard operations.  

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

J.A. Rubio1, A. Martín1, S. Vélez2, E. Barajas1

1 Instituto Tecnológico Agrario de Castilla y León (ITACyL). Valladolid, España
2 Information Technology Group. Wageningen University & Research (WUR). Wageningen. Gelderland. Netherlands

Contact the author*

Keywords

110-Richter, 3309-Couderc, berry quality parameters, minority variety, vigor

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.