terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

Abstract

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

 

The objective of this work is to know the agronomic and oenological suitability of the minority variety Mandón (Garró) on two rootstocks, 110-R and 3309-C in the DO Arribes. The study was carried out in the 2014-2019 period in a trial located in the town of Villarino de los Aires (Sa). The vines have been trained on a trellis, NNE-SSO orientation and bilateral Royat cordon formation. The plot soil, characteristic of the D.O. Arribes is slightly acidic, shallow, with a loamy-sandy texture and low in organic matter.

 

The results show that the vegetative development of Mandón on 110-R indicates that it is more vigorous than 3309-C, with a higher weight of pruning wood and vine shoots. In the trend of this vigor, the 110-R rootstock is slightly more productive than the 3309-C, showing a greater number of clusters per vine and higher yield, although with somewhat smaller berries. The berry quality parameters indicated that the 3309-C rootstock reaches a probable alcoholic degree and a total acidity higher than 110-R. The results reveal that the Mandón variety obtains a better adaptation and conjunction with the 110-R rootstock than with 3309-C, with a better behavior in slightly acid soil, showing overall better vegetative and productive balance with a berry good quality.  

Acknowledgements: Thanks to the financial support of the Junta de Castilla y León (Spain), ITACyL, and the VARMINVID project(FEADER funds). Thanks to Villarino de los Aires Town Hall for its contribution and their help in the vineyard operations.  

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

J.A. Rubio1, A. Martín1, S. Vélez2, E. Barajas1

1 Instituto Tecnológico Agrario de Castilla y León (ITACyL). Valladolid, España
2 Information Technology Group. Wageningen University & Research (WUR). Wageningen. Gelderland. Netherlands

Contact the author*

Keywords

110-Richter, 3309-Couderc, berry quality parameters, minority variety, vigor

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

The use of plasma activated water in barrel disinfection: impact on oak wood composition

The use of barrels is a practice that improves the quality of wines. The porous structure of wood favors the accumulation of microorganisms that can deteriorate the quality of wines so that barrel cleaning and sanitizing treatments are essential. The burning of sulphur discs has been the most common practice in winemaking because ots biocide effect. Nevertheless, its effectiveness is still insufficient and it is harmful for human health.

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.