terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

Abstract

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

 

The objective of this work is to know the agronomic and oenological suitability of the minority variety Mandón (Garró) on two rootstocks, 110-R and 3309-C in the DO Arribes. The study was carried out in the 2014-2019 period in a trial located in the town of Villarino de los Aires (Sa). The vines have been trained on a trellis, NNE-SSO orientation and bilateral Royat cordon formation. The plot soil, characteristic of the D.O. Arribes is slightly acidic, shallow, with a loamy-sandy texture and low in organic matter.

 

The results show that the vegetative development of Mandón on 110-R indicates that it is more vigorous than 3309-C, with a higher weight of pruning wood and vine shoots. In the trend of this vigor, the 110-R rootstock is slightly more productive than the 3309-C, showing a greater number of clusters per vine and higher yield, although with somewhat smaller berries. The berry quality parameters indicated that the 3309-C rootstock reaches a probable alcoholic degree and a total acidity higher than 110-R. The results reveal that the Mandón variety obtains a better adaptation and conjunction with the 110-R rootstock than with 3309-C, with a better behavior in slightly acid soil, showing overall better vegetative and productive balance with a berry good quality.  

Acknowledgements: Thanks to the financial support of the Junta de Castilla y León (Spain), ITACyL, and the VARMINVID project(FEADER funds). Thanks to Villarino de los Aires Town Hall for its contribution and their help in the vineyard operations.  

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

J.A. Rubio1, A. Martín1, S. Vélez2, E. Barajas1

1 Instituto Tecnológico Agrario de Castilla y León (ITACyL). Valladolid, España
2 Information Technology Group. Wageningen University & Research (WUR). Wageningen. Gelderland. Netherlands

Contact the author*

Keywords

110-Richter, 3309-Couderc, berry quality parameters, minority variety, vigor

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.