terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

Abstract

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

 

The objective of this work is to know the agronomic and oenological suitability of the minority variety Mandón (Garró) on two rootstocks, 110-R and 3309-C in the DO Arribes. The study was carried out in the 2014-2019 period in a trial located in the town of Villarino de los Aires (Sa). The vines have been trained on a trellis, NNE-SSO orientation and bilateral Royat cordon formation. The plot soil, characteristic of the D.O. Arribes is slightly acidic, shallow, with a loamy-sandy texture and low in organic matter.

 

The results show that the vegetative development of Mandón on 110-R indicates that it is more vigorous than 3309-C, with a higher weight of pruning wood and vine shoots. In the trend of this vigor, the 110-R rootstock is slightly more productive than the 3309-C, showing a greater number of clusters per vine and higher yield, although with somewhat smaller berries. The berry quality parameters indicated that the 3309-C rootstock reaches a probable alcoholic degree and a total acidity higher than 110-R. The results reveal that the Mandón variety obtains a better adaptation and conjunction with the 110-R rootstock than with 3309-C, with a better behavior in slightly acid soil, showing overall better vegetative and productive balance with a berry good quality.  

Acknowledgements: Thanks to the financial support of the Junta de Castilla y León (Spain), ITACyL, and the VARMINVID project(FEADER funds). Thanks to Villarino de los Aires Town Hall for its contribution and their help in the vineyard operations.  

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

J.A. Rubio1, A. Martín1, S. Vélez2, E. Barajas1

1 Instituto Tecnológico Agrario de Castilla y León (ITACyL). Valladolid, España
2 Information Technology Group. Wageningen University & Research (WUR). Wageningen. Gelderland. Netherlands

Contact the author*

Keywords

110-Richter, 3309-Couderc, berry quality parameters, minority variety, vigor

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.