terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

Abstract

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”. This is the actual goal of its current spin-off GRAPEDIA (The Grape Genomics Encyclopedia; IG17111, https://grapedia.org/). By adhering to the F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) principles, INTEGRAPE began its activities by focusing on data and metadata descriptions (i.e., for experiments), and has provided guidelines on plant phenotyping, including a standard vocabulary for grapevine ontology anatomy and developmental stages; it has delivered recommendations on transcriptomics and metabolomics data acquisition, data analysis, and data sharing into public repositories [1] and it has offered a new reference genome assembly[2], genome browser tools and up-to-date gene functional annotation[3]. Lastly, the network has been advanced in transcriptomics and metabolomics data integration by developing a user-friendly tool[4], available on the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz).

Acknowledgments: We would like to acknowledge all the researchers from several countries who altogether dedicated time, effort, and knowledge to the success of this Cost Action.

References:

1)  Savoi et al. (2021) Grapevine and wine metabolomics-based guidelines for FAIR data and metadata management. Metabolites 11, 757, DOI 10.3390/metabo11110757

2)  Velt et al. (2023). An improved reference of the grapevine genome reasserts the origin of the PN40024 highly homozygous genotype. G3 Genes|Genomes|Genetics, DOI 10.1093/g3journal/jkad067

3)  Navarro-Payá et al. (2022) The grape gene reference catalogue as a standard resource for gene selection and genetic improvement. Frontiers in Plant Science 12:803977 DOI 10.3389/fpls.2021.803977

4)  Savoi et al. (2022) Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. Frontiers in Plant Science 13:937927, DOI 10.3389/fpls.2022.937927

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Stefania Savoi1*, Panagiotis Arapitsas2, Anne-Marie Digby3, Fulvio Mattivi2, José Tomas Matus4

1 Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
2 Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, San Michele all’Adige, Italy
3 Department of Biotechnology, University of Verona, Italy
4 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain

Contact the author*

Keywords

data accessibility, data standardization, data sharing, community, grapevine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The use of plasma activated water in barrel disinfection: impact on oak wood composition

The use of barrels is a practice that improves the quality of wines. The porous structure of wood favors the accumulation of microorganisms that can deteriorate the quality of wines so that barrel cleaning and sanitizing treatments are essential. The burning of sulphur discs has been the most common practice in winemaking because ots biocide effect. Nevertheless, its effectiveness is still insufficient and it is harmful for human health.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.