terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

Abstract

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”. This is the actual goal of its current spin-off GRAPEDIA (The Grape Genomics Encyclopedia; IG17111, https://grapedia.org/). By adhering to the F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) principles, INTEGRAPE began its activities by focusing on data and metadata descriptions (i.e., for experiments), and has provided guidelines on plant phenotyping, including a standard vocabulary for grapevine ontology anatomy and developmental stages; it has delivered recommendations on transcriptomics and metabolomics data acquisition, data analysis, and data sharing into public repositories [1] and it has offered a new reference genome assembly[2], genome browser tools and up-to-date gene functional annotation[3]. Lastly, the network has been advanced in transcriptomics and metabolomics data integration by developing a user-friendly tool[4], available on the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz).

Acknowledgments: We would like to acknowledge all the researchers from several countries who altogether dedicated time, effort, and knowledge to the success of this Cost Action.

References:

1)  Savoi et al. (2021) Grapevine and wine metabolomics-based guidelines for FAIR data and metadata management. Metabolites 11, 757, DOI 10.3390/metabo11110757

2)  Velt et al. (2023). An improved reference of the grapevine genome reasserts the origin of the PN40024 highly homozygous genotype. G3 Genes|Genomes|Genetics, DOI 10.1093/g3journal/jkad067

3)  Navarro-Payá et al. (2022) The grape gene reference catalogue as a standard resource for gene selection and genetic improvement. Frontiers in Plant Science 12:803977 DOI 10.3389/fpls.2021.803977

4)  Savoi et al. (2022) Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. Frontiers in Plant Science 13:937927, DOI 10.3389/fpls.2022.937927

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Stefania Savoi1*, Panagiotis Arapitsas2, Anne-Marie Digby3, Fulvio Mattivi2, José Tomas Matus4

1 Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
2 Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, San Michele all’Adige, Italy
3 Department of Biotechnology, University of Verona, Italy
4 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain

Contact the author*

Keywords

data accessibility, data standardization, data sharing, community, grapevine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

The context of climate crisis leads to the acceleration of technological ripening of grapes, with unsuitable loss of acidity, so various vineyard management alternatives are being considered to delay the grape ripening. The delay of the vegetative cycle towards a period of milder temperatures affects ripening, but vine behavior can vary according to the area, conduction, watering, variety, etc. A work is proposed to know the response to the green pruning of shoots, executed in fruit set and in pea size, in cv. Verdejo.

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.