terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

Abstract

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”. This is the actual goal of its current spin-off GRAPEDIA (The Grape Genomics Encyclopedia; IG17111, https://grapedia.org/). By adhering to the F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) principles, INTEGRAPE began its activities by focusing on data and metadata descriptions (i.e., for experiments), and has provided guidelines on plant phenotyping, including a standard vocabulary for grapevine ontology anatomy and developmental stages; it has delivered recommendations on transcriptomics and metabolomics data acquisition, data analysis, and data sharing into public repositories [1] and it has offered a new reference genome assembly[2], genome browser tools and up-to-date gene functional annotation[3]. Lastly, the network has been advanced in transcriptomics and metabolomics data integration by developing a user-friendly tool[4], available on the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz).

Acknowledgments: We would like to acknowledge all the researchers from several countries who altogether dedicated time, effort, and knowledge to the success of this Cost Action.

References:

1)  Savoi et al. (2021) Grapevine and wine metabolomics-based guidelines for FAIR data and metadata management. Metabolites 11, 757, DOI 10.3390/metabo11110757

2)  Velt et al. (2023). An improved reference of the grapevine genome reasserts the origin of the PN40024 highly homozygous genotype. G3 Genes|Genomes|Genetics, DOI 10.1093/g3journal/jkad067

3)  Navarro-Payá et al. (2022) The grape gene reference catalogue as a standard resource for gene selection and genetic improvement. Frontiers in Plant Science 12:803977 DOI 10.3389/fpls.2021.803977

4)  Savoi et al. (2022) Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. Frontiers in Plant Science 13:937927, DOI 10.3389/fpls.2022.937927

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Stefania Savoi1*, Panagiotis Arapitsas2, Anne-Marie Digby3, Fulvio Mattivi2, José Tomas Matus4

1 Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
2 Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, San Michele all’Adige, Italy
3 Department of Biotechnology, University of Verona, Italy
4 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain

Contact the author*

Keywords

data accessibility, data standardization, data sharing, community, grapevine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Biotype diversity within the autochthonous ‘Bobal’ grapevine variety

Bobal is the second most widely grown Spanish red grape variety (54,165 has), mainly cultivated in the Valencian Community and especially, in Utiel-Requena region (about 67% of 34,000 has). In this study, agronomic and enological parameters were determined in 98 biotypes selected during 2018 and 2019 in more than 50 vineyards over 50 years-old in the Utiel-Requena region. Moreover, a multi-criteria approach considering temperature and rainfall (Fig. 1A), among other parameters, was made to establish three different zones within the region (Fig. 1B), where in the future the selected biotypes will evaluated. In fact, in 2020, 4 replicates and 12 vines per biotype were planted in an experimental vineyard to preserve this important intra-cultivar diversity.

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.

Polyphenol content of cork granulates at different steps of the manufacturing process of microagglomerated stoppers treated with supercritical CO2 used for wine bottling

The wine closure industry is mainly divided into three categories: screw caps, synthetic closures, and cork-based closures. Among this latter, microagglomerated cork stoppers treated with supercritical CO2 are now widely used, especially to avoid cork taint contaminations[1]. They are designed with cork granules obtained from cork offcuts of the punching process during the natural cork stoppers production. A previous study[2] showed that these stoppers released fewer polyphenols in 12 % (v/v) hydroalcoholic solution than natural cork stoppers.

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.