terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

Abstract

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”. This is the actual goal of its current spin-off GRAPEDIA (The Grape Genomics Encyclopedia; IG17111, https://grapedia.org/). By adhering to the F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) principles, INTEGRAPE began its activities by focusing on data and metadata descriptions (i.e., for experiments), and has provided guidelines on plant phenotyping, including a standard vocabulary for grapevine ontology anatomy and developmental stages; it has delivered recommendations on transcriptomics and metabolomics data acquisition, data analysis, and data sharing into public repositories [1] and it has offered a new reference genome assembly[2], genome browser tools and up-to-date gene functional annotation[3]. Lastly, the network has been advanced in transcriptomics and metabolomics data integration by developing a user-friendly tool[4], available on the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz).

Acknowledgments: We would like to acknowledge all the researchers from several countries who altogether dedicated time, effort, and knowledge to the success of this Cost Action.

References:

1)  Savoi et al. (2021) Grapevine and wine metabolomics-based guidelines for FAIR data and metadata management. Metabolites 11, 757, DOI 10.3390/metabo11110757

2)  Velt et al. (2023). An improved reference of the grapevine genome reasserts the origin of the PN40024 highly homozygous genotype. G3 Genes|Genomes|Genetics, DOI 10.1093/g3journal/jkad067

3)  Navarro-Payá et al. (2022) The grape gene reference catalogue as a standard resource for gene selection and genetic improvement. Frontiers in Plant Science 12:803977 DOI 10.3389/fpls.2021.803977

4)  Savoi et al. (2022) Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. Frontiers in Plant Science 13:937927, DOI 10.3389/fpls.2022.937927

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Stefania Savoi1*, Panagiotis Arapitsas2, Anne-Marie Digby3, Fulvio Mattivi2, José Tomas Matus4

1 Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
2 Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, San Michele all’Adige, Italy
3 Department of Biotechnology, University of Verona, Italy
4 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain

Contact the author*

Keywords

data accessibility, data standardization, data sharing, community, grapevine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Physico-chemical properties of vine pruning residues with potential as enological additive

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021.

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).