terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

Abstract

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”. This is the actual goal of its current spin-off GRAPEDIA (The Grape Genomics Encyclopedia; IG17111, https://grapedia.org/). By adhering to the F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) principles, INTEGRAPE began its activities by focusing on data and metadata descriptions (i.e., for experiments), and has provided guidelines on plant phenotyping, including a standard vocabulary for grapevine ontology anatomy and developmental stages; it has delivered recommendations on transcriptomics and metabolomics data acquisition, data analysis, and data sharing into public repositories [1] and it has offered a new reference genome assembly[2], genome browser tools and up-to-date gene functional annotation[3]. Lastly, the network has been advanced in transcriptomics and metabolomics data integration by developing a user-friendly tool[4], available on the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz).

Acknowledgments: We would like to acknowledge all the researchers from several countries who altogether dedicated time, effort, and knowledge to the success of this Cost Action.

References:

1)  Savoi et al. (2021) Grapevine and wine metabolomics-based guidelines for FAIR data and metadata management. Metabolites 11, 757, DOI 10.3390/metabo11110757

2)  Velt et al. (2023). An improved reference of the grapevine genome reasserts the origin of the PN40024 highly homozygous genotype. G3 Genes|Genomes|Genetics, DOI 10.1093/g3journal/jkad067

3)  Navarro-Payá et al. (2022) The grape gene reference catalogue as a standard resource for gene selection and genetic improvement. Frontiers in Plant Science 12:803977 DOI 10.3389/fpls.2021.803977

4)  Savoi et al. (2022) Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. Frontiers in Plant Science 13:937927, DOI 10.3389/fpls.2022.937927

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Stefania Savoi1*, Panagiotis Arapitsas2, Anne-Marie Digby3, Fulvio Mattivi2, José Tomas Matus4

1 Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
2 Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, San Michele all’Adige, Italy
3 Department of Biotechnology, University of Verona, Italy
4 Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain

Contact the author*

Keywords

data accessibility, data standardization, data sharing, community, grapevine

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.