terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Abstract

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers. Therefore, the development of sunburn-resilient grape varieties is one of the imperative and effective strategies for sustainable viticulture in the future. The biodiversity of the genus Vitis provides a wide range of opportunities for developing sunburn-resilient grape varieties. In this perspective, the primary aim is to establish a laboratory-based phenotyping pipeline to monitor heat stress damage, thereby obviating the requirement for the ideal heat stress conditions in the field. Subsequently, using this tool we aim to determine the genomic area(s) responsible for heat stress resilience. The study utilizes a standard quantitative trait locus (QTL) mapping and genome-wide association studies strategy, followed by identifying and characterizing the genes. The findings of such genetic variation facilitate an improved understanding of the mechanisms underlying heat stress resilience. Additionally, molecular markers will eventually enable screening for heat stress resilience using marker-assisted selection (MAS) and extend options for early selection considerably. Thus, this opens up new strategies for the efficient breeding of novel grapevine varieties better adapted to climate change.

Acknowledgements: We gratefully appreciate the Interreg for funding the project KliWiReSSE

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Malagol, Nagarjun; Herzog, Katja; Schwander, Florian; Töpfer, Reinhard; Trapp, Oliver

Julius Kühn-Institut, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany

Contact the author*

Keywords

Vitis vinifera, heat stress, climate resilience, sunburn, QTL, MAS

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Identification of a stable epi-allele associated with flower development and low bunch compactness in a somatic variant of Tempranillo Tinto

Grapevine cultivars are vegetatively propagated to preserve their varietal characteristics. However, spontaneous somatic variations that occur and are maintained during cycles of vegetative growth offer opportunities for the natural improvement of traditional grape cultivars. One advantageous trait for winegrowing is reduced bunch compactness, which decreases the susceptibility to pests and fungal diseases and favor an even berry ripening.

Defoliation combined with exogenous ABA application results in slower ripening and improved anthocyanin profile

Reducing sugar accumulation in grape (Vitis vinifera L.) berries may be a way to mitigate the effect of climate change. Managing canopy and crop load is an effective way to do so, however, reducing canopy size has been demonstrated to induce undesirable effects on anthocyanins. The aim of this study was to test if an application of exogenous ABA on the grape berries of defoliated vines (⅔ of the leaves removed) can result in slower sugar accumulation while maintaining grape and wine quality. An experiment with defoliation and exogenous ABA application on directly on clusters (factorial design 2×2) was performed with ‘Tempranillo’ fruit-bearing cuttings.