terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Pre-breeding for developing heat stress resilient grape varieties to ensure yield 

Abstract

Climate change has numerous detrimental consequences and creates new challenges for viticulture around the world. Transitory or constant high temperatures frequently associated with an excess of sunlight (UV) can cause a variety of physiological disorders, such as sunburn. Diverse environmental factors and the plant’s response mechanisms to stress determine the symptoms. Grapevine berry sunburn leads to a drastic reduction in yield, and may eventually decline berry quality. Consequently, this poses a significant risk to the winegrowers. Therefore, the development of sunburn-resilient grape varieties is one of the imperative and effective strategies for sustainable viticulture in the future. The biodiversity of the genus Vitis provides a wide range of opportunities for developing sunburn-resilient grape varieties. In this perspective, the primary aim is to establish a laboratory-based phenotyping pipeline to monitor heat stress damage, thereby obviating the requirement for the ideal heat stress conditions in the field. Subsequently, using this tool we aim to determine the genomic area(s) responsible for heat stress resilience. The study utilizes a standard quantitative trait locus (QTL) mapping and genome-wide association studies strategy, followed by identifying and characterizing the genes. The findings of such genetic variation facilitate an improved understanding of the mechanisms underlying heat stress resilience. Additionally, molecular markers will eventually enable screening for heat stress resilience using marker-assisted selection (MAS) and extend options for early selection considerably. Thus, this opens up new strategies for the efficient breeding of novel grapevine varieties better adapted to climate change.

Acknowledgements: We gratefully appreciate the Interreg for funding the project KliWiReSSE

DOI:

Publication date: October 6, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Malagol, Nagarjun; Herzog, Katja; Schwander, Florian; Töpfer, Reinhard; Trapp, Oliver

Julius Kühn-Institut, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany

Contact the author*

Keywords

Vitis vinifera, heat stress, climate resilience, sunburn, QTL, MAS

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.