terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Abstract

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah, and Ugni blanc were grafted onto 55 different rootstock genotypes and planted as three replicates of five plants in sandy gravelly soil near Bordeaux, France (GreffAdapt plot). In 2020 and 2021, petiolar concentrations of 13 mineral elements were determined at veraison. Winter pruning weight, vigour, leaf chlorophyll content, fertility and yield were measured. Mg deficiency severity was visually scored for each plant. Rootstocks were grouped according to their parentage when at least 50 % of a Vitis species was present in order to determine whether the petiole mineral composition could be related to the genetic parentage.

Scion, rootstock, and their interactions had a significant influence on petiole mineral content and explained the same proportion of phenotypic variance for most mineral elements. Rootstock effect explained from 8 % for Al to 42 % for S of the variance and an important part for Mg with 35 %. The genetic background V. riparia increased the probability of low P and Mg contents. The differences in mineral status conferred by rootstocks were not significantly correlated with vigour or fertility.

This unique experimental design has shown that the rootstock effect is higher than the scion effect on the petiole concentration of most mineral elements. The evaluation of Mg levels by petiole analysis and intensities of deficiency symptoms showed, for the first time, the variability of the thresholds of satisfactory mineral nutrition. Therefore, fertilization management has to take the rootstock into account.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marine Morel1*, Sarah Jane Cookson1, Nathalie Ollat1, Elisa Marguerit1

1 EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV

Contact the author*

Keywords

Vitis, climate change, plant material, mineral status, genetic background, rootstock x scion interaction

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.