terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Abstract

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah, and Ugni blanc were grafted onto 55 different rootstock genotypes and planted as three replicates of five plants in sandy gravelly soil near Bordeaux, France (GreffAdapt plot). In 2020 and 2021, petiolar concentrations of 13 mineral elements were determined at veraison. Winter pruning weight, vigour, leaf chlorophyll content, fertility and yield were measured. Mg deficiency severity was visually scored for each plant. Rootstocks were grouped according to their parentage when at least 50 % of a Vitis species was present in order to determine whether the petiole mineral composition could be related to the genetic parentage.

Scion, rootstock, and their interactions had a significant influence on petiole mineral content and explained the same proportion of phenotypic variance for most mineral elements. Rootstock effect explained from 8 % for Al to 42 % for S of the variance and an important part for Mg with 35 %. The genetic background V. riparia increased the probability of low P and Mg contents. The differences in mineral status conferred by rootstocks were not significantly correlated with vigour or fertility.

This unique experimental design has shown that the rootstock effect is higher than the scion effect on the petiole concentration of most mineral elements. The evaluation of Mg levels by petiole analysis and intensities of deficiency symptoms showed, for the first time, the variability of the thresholds of satisfactory mineral nutrition. Therefore, fertilization management has to take the rootstock into account.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marine Morel1*, Sarah Jane Cookson1, Nathalie Ollat1, Elisa Marguerit1

1 EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV

Contact the author*

Keywords

Vitis, climate change, plant material, mineral status, genetic background, rootstock x scion interaction

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.