terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Abstract

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah, and Ugni blanc were grafted onto 55 different rootstock genotypes and planted as three replicates of five plants in sandy gravelly soil near Bordeaux, France (GreffAdapt plot). In 2020 and 2021, petiolar concentrations of 13 mineral elements were determined at veraison. Winter pruning weight, vigour, leaf chlorophyll content, fertility and yield were measured. Mg deficiency severity was visually scored for each plant. Rootstocks were grouped according to their parentage when at least 50 % of a Vitis species was present in order to determine whether the petiole mineral composition could be related to the genetic parentage.

Scion, rootstock, and their interactions had a significant influence on petiole mineral content and explained the same proportion of phenotypic variance for most mineral elements. Rootstock effect explained from 8 % for Al to 42 % for S of the variance and an important part for Mg with 35 %. The genetic background V. riparia increased the probability of low P and Mg contents. The differences in mineral status conferred by rootstocks were not significantly correlated with vigour or fertility.

This unique experimental design has shown that the rootstock effect is higher than the scion effect on the petiole concentration of most mineral elements. The evaluation of Mg levels by petiole analysis and intensities of deficiency symptoms showed, for the first time, the variability of the thresholds of satisfactory mineral nutrition. Therefore, fertilization management has to take the rootstock into account.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marine Morel1*, Sarah Jane Cookson1, Nathalie Ollat1, Elisa Marguerit1

1 EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV

Contact the author*

Keywords

Vitis, climate change, plant material, mineral status, genetic background, rootstock x scion interaction

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.