terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Abstract

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.

Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah, and Ugni blanc were grafted onto 55 different rootstock genotypes and planted as three replicates of five plants in sandy gravelly soil near Bordeaux, France (GreffAdapt plot). In 2020 and 2021, petiolar concentrations of 13 mineral elements were determined at veraison. Winter pruning weight, vigour, leaf chlorophyll content, fertility and yield were measured. Mg deficiency severity was visually scored for each plant. Rootstocks were grouped according to their parentage when at least 50 % of a Vitis species was present in order to determine whether the petiole mineral composition could be related to the genetic parentage.

Scion, rootstock, and their interactions had a significant influence on petiole mineral content and explained the same proportion of phenotypic variance for most mineral elements. Rootstock effect explained from 8 % for Al to 42 % for S of the variance and an important part for Mg with 35 %. The genetic background V. riparia increased the probability of low P and Mg contents. The differences in mineral status conferred by rootstocks were not significantly correlated with vigour or fertility.

This unique experimental design has shown that the rootstock effect is higher than the scion effect on the petiole concentration of most mineral elements. The evaluation of Mg levels by petiole analysis and intensities of deficiency symptoms showed, for the first time, the variability of the thresholds of satisfactory mineral nutrition. Therefore, fertilization management has to take the rootstock into account.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marine Morel1*, Sarah Jane Cookson1, Nathalie Ollat1, Elisa Marguerit1

1 EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV

Contact the author*

Keywords

Vitis, climate change, plant material, mineral status, genetic background, rootstock x scion interaction

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Chemical and microbiological evaluation of Ribeiro wines (NW Spain)

Wine produced under Designation of Origin (DOP) Ribeiro, the oldest DOP in Galicia (NW Spain), are elaborated using local grape cultivars, grown at the valleys of Miño, Avia and Arnoia rivers. The landscape formed by slopes and terraces and the peculiar climate of continental character, softened by the proximity of Atlantic Ocean, make it an area of excellent aptitude for vine cultivation. In addition, small-scale farming and the use of traditional techniques for vineyard management provide a great diversity to Ribeiro wines. This study presents the evaluation of red and white wines (bottled or bulk wines) from DOP Ribeiro, produced between years 2018-2022.

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.