terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The influence of pre-heatwave leaf removal on leaf physiology and berry development

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Abstract

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

However, there is limited knowledge on how leaf removal influences water relations, especially when applied immediately before a heatwave. The purpose of this study is to investigate how leaf removal (reducing the total leaf area by 30 % in the apical part of the canopy) influences leaf physiology and berry quality under multiple abiotic stress conditions. Using climate chambers that allow a fine control of the climatic conditions, a 5-day heatwave with maximum temperature of 40 °C will be simulated. The factorial experiment includes two levels of soil water availability (irrigated, drought stressed) and two levels of defoliation (defoliated, not defoliated) with the intention to determine how pre-heatwave leaf removal influences (I) the usage of water under heat and drought conditions, (II) leaf physiological performance (gas exchange, photosystem efficiency), as well as (III) berry development and quality (yield, chemical composition and berry mechanical properties). Our hypothesis is that, by significantly reducing the leaf area (i.e. water transpiring surface) before a heatwave, fewer irrigation water is needed to maintain a favorable water status. The experiment is currently ongoing (summer 2023), therefore we cannot provide preliminary results at this stage. Nevertheless, with our results we hope to validate leaf removal a new and easy to implement short-term adaption strategy to make viticulture more resilient in the context of climate change.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mario Wegher1, 2*, Georg Niedrist2, Massimo Tagliavini1, Carlo Andreotti1

1Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
2Institute for Alpine Environment, European Academy of Bolzano/Bozen, Drususallee 1, Bolzano, 39100, Italy

Contact the author*

Keywords

grapevine, drought stress, heat stress, leaf removal, berry quality

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

The use of δ13C as an indicator of water use efficiency for the selection of drought tolerant grapevine varieties

In the context of climate change with increasing evaporative demand, understanding the water use behavior of different grapevine cultivars is of critical importance. Carbon isotope discrimination (δ13C) measurements in wine provide a precise and integrated assessment of the water status of the vines during the sugar accumulation period in grape berries. When collected over multiple vintages on different cultivars, δ13C measurements can also provide insights into the effects of genotype on water use efficiency.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.