terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The influence of pre-heatwave leaf removal on leaf physiology and berry development

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Abstract

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

However, there is limited knowledge on how leaf removal influences water relations, especially when applied immediately before a heatwave. The purpose of this study is to investigate how leaf removal (reducing the total leaf area by 30 % in the apical part of the canopy) influences leaf physiology and berry quality under multiple abiotic stress conditions. Using climate chambers that allow a fine control of the climatic conditions, a 5-day heatwave with maximum temperature of 40 °C will be simulated. The factorial experiment includes two levels of soil water availability (irrigated, drought stressed) and two levels of defoliation (defoliated, not defoliated) with the intention to determine how pre-heatwave leaf removal influences (I) the usage of water under heat and drought conditions, (II) leaf physiological performance (gas exchange, photosystem efficiency), as well as (III) berry development and quality (yield, chemical composition and berry mechanical properties). Our hypothesis is that, by significantly reducing the leaf area (i.e. water transpiring surface) before a heatwave, fewer irrigation water is needed to maintain a favorable water status. The experiment is currently ongoing (summer 2023), therefore we cannot provide preliminary results at this stage. Nevertheless, with our results we hope to validate leaf removal a new and easy to implement short-term adaption strategy to make viticulture more resilient in the context of climate change.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mario Wegher1, 2*, Georg Niedrist2, Massimo Tagliavini1, Carlo Andreotti1

1Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
2Institute for Alpine Environment, European Academy of Bolzano/Bozen, Drususallee 1, Bolzano, 39100, Italy

Contact the author*

Keywords

grapevine, drought stress, heat stress, leaf removal, berry quality

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.