terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 The influence of pre-heatwave leaf removal on leaf physiology and berry development

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Abstract

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

However, there is limited knowledge on how leaf removal influences water relations, especially when applied immediately before a heatwave. The purpose of this study is to investigate how leaf removal (reducing the total leaf area by 30 % in the apical part of the canopy) influences leaf physiology and berry quality under multiple abiotic stress conditions. Using climate chambers that allow a fine control of the climatic conditions, a 5-day heatwave with maximum temperature of 40 °C will be simulated. The factorial experiment includes two levels of soil water availability (irrigated, drought stressed) and two levels of defoliation (defoliated, not defoliated) with the intention to determine how pre-heatwave leaf removal influences (I) the usage of water under heat and drought conditions, (II) leaf physiological performance (gas exchange, photosystem efficiency), as well as (III) berry development and quality (yield, chemical composition and berry mechanical properties). Our hypothesis is that, by significantly reducing the leaf area (i.e. water transpiring surface) before a heatwave, fewer irrigation water is needed to maintain a favorable water status. The experiment is currently ongoing (summer 2023), therefore we cannot provide preliminary results at this stage. Nevertheless, with our results we hope to validate leaf removal a new and easy to implement short-term adaption strategy to make viticulture more resilient in the context of climate change.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Mario Wegher1, 2*, Georg Niedrist2, Massimo Tagliavini1, Carlo Andreotti1

1Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
2Institute for Alpine Environment, European Academy of Bolzano/Bozen, Drususallee 1, Bolzano, 39100, Italy

Contact the author*

Keywords

grapevine, drought stress, heat stress, leaf removal, berry quality

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency).

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1].