terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Abstract

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain. To address this gap, a trial was conducted to assess whether MeJ and BTH application could enhance the biosynthesis of PC involved in the defense mechanisms of Monastrell seedlings. The trial involved grapevine seedlings of the Monastrell variety grown in individual pots in a controlled environment. Four treatments were administered, including water (control), MeJ, BTH, and a combination of MeJ and BTH. Leaf samples were collected at various time intervals, and the quantification of stilbenes and flavonols was carried out. The results demonstrated that the elicitor treatments positively influenced the biosynthesis of stilbenes and flavonols. The application of MeJ led to significant increases in the production of key grapevine antimicrobial stilbenes, as well as some flavonols, particularly at 18-hours after treatment. These increases remained above control levels throughout the trial. The effects of BTH and MeJ+BTH treatments were less pronounced compared to MeJ alone, with the highest increase observed at 24-hours after treatment. However, they were always greater than the control. Overall, the findings suggest that the application of MeJ and BTH has the potential to improve the defence mechanisms of Monastrell vines, reducing reliance on chemical treatments. Further research is needed to validate the elicitor activity of MeJ and BTH against common grapevine diseases.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

D. Paladines-Quezada1*, J. D. Moreno-Olivares2, M. J. Giménez-Bañón2, J. A. Bleda-Sánchez, A. Cebrián-Pérez, J. C. Gómez-Martínez, J. I. Fernández-Fernández2 y Rocío Gil-Muñoz2

1Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Ctra. de Burgos, km. 6, 26007 (Logroño, Spain).
2Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA). Ctra. La Alberca s/n, 30150 (Murcia, Spain).

Contact the author*

Keywords

stilbenes, induced resistance, elicitor, vineyard

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.