terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Abstract

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain. To address this gap, a trial was conducted to assess whether MeJ and BTH application could enhance the biosynthesis of PC involved in the defense mechanisms of Monastrell seedlings. The trial involved grapevine seedlings of the Monastrell variety grown in individual pots in a controlled environment. Four treatments were administered, including water (control), MeJ, BTH, and a combination of MeJ and BTH. Leaf samples were collected at various time intervals, and the quantification of stilbenes and flavonols was carried out. The results demonstrated that the elicitor treatments positively influenced the biosynthesis of stilbenes and flavonols. The application of MeJ led to significant increases in the production of key grapevine antimicrobial stilbenes, as well as some flavonols, particularly at 18-hours after treatment. These increases remained above control levels throughout the trial. The effects of BTH and MeJ+BTH treatments were less pronounced compared to MeJ alone, with the highest increase observed at 24-hours after treatment. However, they were always greater than the control. Overall, the findings suggest that the application of MeJ and BTH has the potential to improve the defence mechanisms of Monastrell vines, reducing reliance on chemical treatments. Further research is needed to validate the elicitor activity of MeJ and BTH against common grapevine diseases.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

D. Paladines-Quezada1*, J. D. Moreno-Olivares2, M. J. Giménez-Bañón2, J. A. Bleda-Sánchez, A. Cebrián-Pérez, J. C. Gómez-Martínez, J. I. Fernández-Fernández2 y Rocío Gil-Muñoz2

1Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Ctra. de Burgos, km. 6, 26007 (Logroño, Spain).
2Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA). Ctra. La Alberca s/n, 30150 (Murcia, Spain).

Contact the author*

Keywords

stilbenes, induced resistance, elicitor, vineyard

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Retrospective analysis of our knowledge regarding the genetics of relevant traits for rootstock breeding 

Rootstocks were the first sustainable and environmentally friendly strategy to cope with a major threat for Vitis vinifera cultivation. In addition to providing Phylloxera resistance, they play an important role in protecting against other soil-borne pests, such as nematodes, and in adapting V. vinifera to limiting abiotic conditions. Today viticulture has to adapt to ongoing climate change whilst simultaneously reducing its environmental impact. In this context, rootstocks are a central element in the development of agro-ecological practices that increase adaptive potential with low external inputs. Despite the apparent diversity of the Vitis genus, only few rootstock varieties are used worldwide and most of them have a very narrow genetic background. This means that there is considerable scope to breed new, improved rootstocks to adapt viticulture for the future.

Chemical and microbiological evaluation of Ribeiro wines (NW Spain)

Wine produced under Designation of Origin (DOP) Ribeiro, the oldest DOP in Galicia (NW Spain), are elaborated using local grape cultivars, grown at the valleys of Miño, Avia and Arnoia rivers. The landscape formed by slopes and terraces and the peculiar climate of continental character, softened by the proximity of Atlantic Ocean, make it an area of excellent aptitude for vine cultivation. In addition, small-scale farming and the use of traditional techniques for vineyard management provide a great diversity to Ribeiro wines. This study presents the evaluation of red and white wines (bottled or bulk wines) from DOP Ribeiro, produced between years 2018-2022.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective.