terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Abstract

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain. To address this gap, a trial was conducted to assess whether MeJ and BTH application could enhance the biosynthesis of PC involved in the defense mechanisms of Monastrell seedlings. The trial involved grapevine seedlings of the Monastrell variety grown in individual pots in a controlled environment. Four treatments were administered, including water (control), MeJ, BTH, and a combination of MeJ and BTH. Leaf samples were collected at various time intervals, and the quantification of stilbenes and flavonols was carried out. The results demonstrated that the elicitor treatments positively influenced the biosynthesis of stilbenes and flavonols. The application of MeJ led to significant increases in the production of key grapevine antimicrobial stilbenes, as well as some flavonols, particularly at 18-hours after treatment. These increases remained above control levels throughout the trial. The effects of BTH and MeJ+BTH treatments were less pronounced compared to MeJ alone, with the highest increase observed at 24-hours after treatment. However, they were always greater than the control. Overall, the findings suggest that the application of MeJ and BTH has the potential to improve the defence mechanisms of Monastrell vines, reducing reliance on chemical treatments. Further research is needed to validate the elicitor activity of MeJ and BTH against common grapevine diseases.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

D. Paladines-Quezada1*, J. D. Moreno-Olivares2, M. J. Giménez-Bañón2, J. A. Bleda-Sánchez, A. Cebrián-Pérez, J. C. Gómez-Martínez, J. I. Fernández-Fernández2 y Rocío Gil-Muñoz2

1Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Ctra. de Burgos, km. 6, 26007 (Logroño, Spain).
2Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA). Ctra. La Alberca s/n, 30150 (Murcia, Spain).

Contact the author*

Keywords

stilbenes, induced resistance, elicitor, vineyard

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

Development and validation of a free solvent UHPLC/MS-MS method to analyse melatonin and its precursors in Spanish commercial wines  

Melatonin is a bioactive compound present in foods and beverages such as wines. During alcoholic fermentation, yeast transforms tryptophan into certain indole compounds, including melatonin. This paper aims to develop and validate a free solvent analytical method by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC/MS-MS) to determine melatonin and its precursors (L-tryptophan, tryptamine, serotonin, tryptophol, N-acetylserotonin, 5-hydroxytryptophan, and 3- indoleacetic) that appropriately prevent the matrix effect.

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.