terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Abstract

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain. To address this gap, a trial was conducted to assess whether MeJ and BTH application could enhance the biosynthesis of PC involved in the defense mechanisms of Monastrell seedlings. The trial involved grapevine seedlings of the Monastrell variety grown in individual pots in a controlled environment. Four treatments were administered, including water (control), MeJ, BTH, and a combination of MeJ and BTH. Leaf samples were collected at various time intervals, and the quantification of stilbenes and flavonols was carried out. The results demonstrated that the elicitor treatments positively influenced the biosynthesis of stilbenes and flavonols. The application of MeJ led to significant increases in the production of key grapevine antimicrobial stilbenes, as well as some flavonols, particularly at 18-hours after treatment. These increases remained above control levels throughout the trial. The effects of BTH and MeJ+BTH treatments were less pronounced compared to MeJ alone, with the highest increase observed at 24-hours after treatment. However, they were always greater than the control. Overall, the findings suggest that the application of MeJ and BTH has the potential to improve the defence mechanisms of Monastrell vines, reducing reliance on chemical treatments. Further research is needed to validate the elicitor activity of MeJ and BTH against common grapevine diseases.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

D. Paladines-Quezada1*, J. D. Moreno-Olivares2, M. J. Giménez-Bañón2, J. A. Bleda-Sánchez, A. Cebrián-Pérez, J. C. Gómez-Martínez, J. I. Fernández-Fernández2 y Rocío Gil-Muñoz2

1Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Ctra. de Burgos, km. 6, 26007 (Logroño, Spain).
2Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA). Ctra. La Alberca s/n, 30150 (Murcia, Spain).

Contact the author*

Keywords

stilbenes, induced resistance, elicitor, vineyard

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Sensory profile of wines obtained from disease-resistant varieties in La Rioja

The European wine industry is facing multiple challenges derived from climate change and the pressure of different fungal diseases that are compromising the production of traditional varieties. A sustainable alternative maybe the adoption of resistant varieties.
In this study, we have evaluated the enological potential of 9 resistant varieties (5 white and 4 red varieties) in La Rioja. Microvinifications were carried out with three biological replications. Oenological parameters were very diverse with acid content varying from 2.6 g/L to 6.6 g/L.

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.