terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Abstract

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain. To address this gap, a trial was conducted to assess whether MeJ and BTH application could enhance the biosynthesis of PC involved in the defense mechanisms of Monastrell seedlings. The trial involved grapevine seedlings of the Monastrell variety grown in individual pots in a controlled environment. Four treatments were administered, including water (control), MeJ, BTH, and a combination of MeJ and BTH. Leaf samples were collected at various time intervals, and the quantification of stilbenes and flavonols was carried out. The results demonstrated that the elicitor treatments positively influenced the biosynthesis of stilbenes and flavonols. The application of MeJ led to significant increases in the production of key grapevine antimicrobial stilbenes, as well as some flavonols, particularly at 18-hours after treatment. These increases remained above control levels throughout the trial. The effects of BTH and MeJ+BTH treatments were less pronounced compared to MeJ alone, with the highest increase observed at 24-hours after treatment. However, they were always greater than the control. Overall, the findings suggest that the application of MeJ and BTH has the potential to improve the defence mechanisms of Monastrell vines, reducing reliance on chemical treatments. Further research is needed to validate the elicitor activity of MeJ and BTH against common grapevine diseases.

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

D. Paladines-Quezada1*, J. D. Moreno-Olivares2, M. J. Giménez-Bañón2, J. A. Bleda-Sánchez, A. Cebrián-Pérez, J. C. Gómez-Martínez, J. I. Fernández-Fernández2 y Rocío Gil-Muñoz2

1Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Ctra. de Burgos, km. 6, 26007 (Logroño, Spain).
2Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA). Ctra. La Alberca s/n, 30150 (Murcia, Spain).

Contact the author*

Keywords

stilbenes, induced resistance, elicitor, vineyard

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.