terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Abstract

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique. Two vineyard soils from La Rioja were selected (S1-sandy loam, 0.26% OC; and S2-clay loam, 0.69% OC). Freundlich Kf adsorption constants of tetraconazole (3.6-19.2) by unamended and amended soils increased in the order: S1 < S2 < S2+GC < S2+VP < S1+VP ≈ S1+GC < S2+SMS < S1+SMS; and for the residues in the order: GC < VP < SMS. The Kf values of amended soils, especially for SMS-amended soils, were higher than those of unamended soils, due to their higher OC content. The application of organic residues to S1 soil increased its Kf value between 3.7-5.4 times, and that of S2 soil up to 2.7 times. However, the Kf values of S1 soil amended with the different organic residues were higher than those of amended S2 soils, despite their lower OC content. Therefore, physicochemical characteristics of soils different from OC (pH, carbonates, clay content, etc.) may also play an important role on the adsorption of tetraconazole by amended soils as observed for other fungicides.

Acknowledgements: We give thanks to Project TED2021-129962B-C41, funded by MCIN/AEI/10.13039/501100011033/ and the European Union (NextGenerationEU/PRTR).

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Asier Barrio1, M. Soledad Andrades2, M. Sonia Rodríguez-Cruz1, Jesús M. Marín-Benito1*

Institute of Natural Resources and Agrobiology of Salamanca (IRNASA, CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain.
2 Agriculture and Food Department, University of La Rioja, Madre de Dios 51, 26006 Logroño, Spain.

Contact the author*

Keywords

adsorption, fungicide, vineyard soil, conservation, organic amendment

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Green pruning of shoots to force new sprouting of buds, in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

The context of climate crisis leads to the acceleration of technological ripening of grapes, with unsuitable loss of acidity, so various vineyard management alternatives are being considered to delay the grape ripening. The delay of the vegetative cycle towards a period of milder temperatures affects ripening, but vine behavior can vary according to the area, conduction, watering, variety, etc. A work is proposed to know the response to the green pruning of shoots, executed in fruit set and in pea size, in cv. Verdejo.

Late pruning, an alternative for rainfed vine varieties facing new climatic conditions

In Chile there is a dry farming area known as a traditional wine region, where varieties brought by the Spanish conquerors still persist. These varieties, in general, are cultivated under traditional systems, with low use of technical and economic resources, and low profitability for their grapes and wines. In this region, as in other wine grape growing areas, climatic conditions have changed significantly in recent decades. In particular, the occurrence of spring frosts, when bud break has already begun, have generated significant losses for these growers.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).