terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Abstract

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Building upon previous research that underscored the pivotal influence of magnesium on Brettanomyces proliferation, the objective of this study was to evaluate and authenticate the effectiveness of ED as a means of diminishing Mg2+levels and efficiently inhibiting the development of Brettanomyces in wine. Pilot-scale trials were conducted, and the results showed that the use of ED reduced the Mg2+ content in wine. At 40% intensity, the ED removed 66% of the Mg2+, reducing it from 93 mg/L to 32 mg/L. The use of higher intensities led to a further reduction in Mg2+ levels, with 70% intensity reducing the Mg2+ content to 7.5 mg/L.

Furthermore, an ongoing study is assessing the sensitivity of Brettanomyces yeast to different intensities of ED treatment to determine the optimal treatment intensity that can prevent its proliferation in wine. If successful in preventing Brettanomyces growth could lead to the commercial-scale treatment of wines using ED technology, providing winemakers with valuable technology to manage spoilage.

The results of this study could have significant implications for the wine industry, providing beneficial alternatives for managing spoilage and improving the quality of wine.

Acknowledgments:

The ARC Training Centre for Innovative Wine Production

The Australian Wine Research Institute

Pernod Ricard Winemakers

References:

1)  Bartel, C., et al. (2021). “Adaptive evolution of sulfite tolerance in Brettanomyces bruxellensis.” FEMS Yeast Research 21(5), https://doi.org/10.1093/femsyr/foab036.

2)  El Rayess, Y. and M. Mietton-Peuchot (2016). “Membrane Technologies in Wine Industry: An Overview.” Critical Reviews in Food Science and Nutrition 56(12): 2005-2020, https://doi.org/10.1080/10408398.2013.809566.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

  1. Giordano1-2, J. Macintyre3, A. Bornema1-4, P. Grbin1

1 Wine Science Discipline, School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide, Urrbrae, South Australia 5064, Australia
2 Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Urrbrae, South Australia 5064, Australia
3 Pernod Ricard Winemakers, 1914 Barossa Valley Way, Rowland Flat, SA 5352, Australia
4 The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia

Contact the author*

Keywords

Brettanomyces, electrodialysis technology, magnesium, wine stability, microbiological stability, spoilage management

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities. The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].