terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Abstract

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Building upon previous research that underscored the pivotal influence of magnesium on Brettanomyces proliferation, the objective of this study was to evaluate and authenticate the effectiveness of ED as a means of diminishing Mg2+levels and efficiently inhibiting the development of Brettanomyces in wine. Pilot-scale trials were conducted, and the results showed that the use of ED reduced the Mg2+ content in wine. At 40% intensity, the ED removed 66% of the Mg2+, reducing it from 93 mg/L to 32 mg/L. The use of higher intensities led to a further reduction in Mg2+ levels, with 70% intensity reducing the Mg2+ content to 7.5 mg/L.

Furthermore, an ongoing study is assessing the sensitivity of Brettanomyces yeast to different intensities of ED treatment to determine the optimal treatment intensity that can prevent its proliferation in wine. If successful in preventing Brettanomyces growth could lead to the commercial-scale treatment of wines using ED technology, providing winemakers with valuable technology to manage spoilage.

The results of this study could have significant implications for the wine industry, providing beneficial alternatives for managing spoilage and improving the quality of wine.

Acknowledgments:

The ARC Training Centre for Innovative Wine Production

The Australian Wine Research Institute

Pernod Ricard Winemakers

References:

1)  Bartel, C., et al. (2021). “Adaptive evolution of sulfite tolerance in Brettanomyces bruxellensis.” FEMS Yeast Research 21(5), https://doi.org/10.1093/femsyr/foab036.

2)  El Rayess, Y. and M. Mietton-Peuchot (2016). “Membrane Technologies in Wine Industry: An Overview.” Critical Reviews in Food Science and Nutrition 56(12): 2005-2020, https://doi.org/10.1080/10408398.2013.809566.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

  1. Giordano1-2, J. Macintyre3, A. Bornema1-4, P. Grbin1

1 Wine Science Discipline, School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide, Urrbrae, South Australia 5064, Australia
2 Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Urrbrae, South Australia 5064, Australia
3 Pernod Ricard Winemakers, 1914 Barossa Valley Way, Rowland Flat, SA 5352, Australia
4 The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia

Contact the author*

Keywords

Brettanomyces, electrodialysis technology, magnesium, wine stability, microbiological stability, spoilage management

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.

Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

The irrigation water management in the vineyard is a crucial aspect to obtain sustainable quality production over time. Previous studies have set the water requirements to be applied in the vineyard at 30 % of the reference evapotranspiration (ET0), although there are no studies that settle the effects of the frequency of irrigation application on red varieties in Spain. The present study contemplates the application of deficit irrigation (30 % ET0) applying a weekly dose in a single irrigation (T07) or in two irrigation events (T03) per week. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.