terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Abstract

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Building upon previous research that underscored the pivotal influence of magnesium on Brettanomyces proliferation, the objective of this study was to evaluate and authenticate the effectiveness of ED as a means of diminishing Mg2+levels and efficiently inhibiting the development of Brettanomyces in wine. Pilot-scale trials were conducted, and the results showed that the use of ED reduced the Mg2+ content in wine. At 40% intensity, the ED removed 66% of the Mg2+, reducing it from 93 mg/L to 32 mg/L. The use of higher intensities led to a further reduction in Mg2+ levels, with 70% intensity reducing the Mg2+ content to 7.5 mg/L.

Furthermore, an ongoing study is assessing the sensitivity of Brettanomyces yeast to different intensities of ED treatment to determine the optimal treatment intensity that can prevent its proliferation in wine. If successful in preventing Brettanomyces growth could lead to the commercial-scale treatment of wines using ED technology, providing winemakers with valuable technology to manage spoilage.

The results of this study could have significant implications for the wine industry, providing beneficial alternatives for managing spoilage and improving the quality of wine.

Acknowledgments:

The ARC Training Centre for Innovative Wine Production

The Australian Wine Research Institute

Pernod Ricard Winemakers

References:

1)  Bartel, C., et al. (2021). “Adaptive evolution of sulfite tolerance in Brettanomyces bruxellensis.” FEMS Yeast Research 21(5), https://doi.org/10.1093/femsyr/foab036.

2)  El Rayess, Y. and M. Mietton-Peuchot (2016). “Membrane Technologies in Wine Industry: An Overview.” Critical Reviews in Food Science and Nutrition 56(12): 2005-2020, https://doi.org/10.1080/10408398.2013.809566.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

  1. Giordano1-2, J. Macintyre3, A. Bornema1-4, P. Grbin1

1 Wine Science Discipline, School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide, Urrbrae, South Australia 5064, Australia
2 Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Urrbrae, South Australia 5064, Australia
3 Pernod Ricard Winemakers, 1914 Barossa Valley Way, Rowland Flat, SA 5352, Australia
4 The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia

Contact the author*

Keywords

Brettanomyces, electrodialysis technology, magnesium, wine stability, microbiological stability, spoilage management

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.