terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Abstract

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).

The trials were carried out in two regular vine plantations (Vitis vinifera cv. Tempranillo). The experimental design was in randomized blocks with three treatments (Trichoderma harzianum autochthonous strain, 6PP and control) and 10 repetitions (plants) per block. A total of 6 applications of treatments were made on the entire vegetative part of the plant every 15 days. During the development of the test, levels of potassium, calcium and magnesium were measured in the vine leaves and must quality parameters were analyzed at the time of harvest.

The nutrient data showed an increase in the concentration of potassium in leaves in the treatment with the autochthonous Trichoderma harzianum strain compared to the other two treatments. In the case of the analysis of the quality of the grapes, an increase in the concentrations of malic acid, total acidity, potassium, probable º and density of the must was also observed in the treatment with the autochthonous Trichodermacompared to the rest of the treatments.

Thanks to the Ministry of Education, Culture and Sports (Spain) for the grant awarded to Laura Zanfaño González (FPU 20/03040), to the own research program of the University of León 2022 for the grant awarded to Daniela Ramírez Lozano. As well as the project acronym LOWPHWINE, reference IDI-20210391.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Zanfaño L.1*, Carro-Huerga G.1, Mayo-Prieto S.1, Rodríguez-González A.1, Ramírez-Lozano D.1, Gutiérrez S.2, Casquero P.A.1

1Grupo de Investigación de Ingeniería y Agricultura Sostenible (GUIIAS). Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León Av. Portugal 41, 24071 León, España.
2Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS). Área de Microbiología. Escuela de Ingeniería Agraria y Forestal. Campus de Ponferrada. Universidad de León. León. España.

Contact the author*

Keywords

Trichoderma harzianum, 6PP, potassium, quality of the grapes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Evaluation of phenology, agronomic and oenological quality in minority wine varieties in Madrid as a strategy for adaptation to climate change

The main phenological stages (budburst, flowering, veraison, and ripeness) and the fruit composition of 34 Spanish minority varieties were studied to determine their cultivation potential and help winegrowers adapt their production systems to climate change conditions. In total, 4 control cultivars, and 30 minority varieties from central Spain were studied during a period of 3 campaigns, in the ampelographic collection “El Encín”, in Alcalá de Henares, Madrid. Agronomic and oenological characteristics such as yield, and total soluble solids concentration have been monitored.

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.