terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Abstract

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).

The trials were carried out in two regular vine plantations (Vitis vinifera cv. Tempranillo). The experimental design was in randomized blocks with three treatments (Trichoderma harzianum autochthonous strain, 6PP and control) and 10 repetitions (plants) per block. A total of 6 applications of treatments were made on the entire vegetative part of the plant every 15 days. During the development of the test, levels of potassium, calcium and magnesium were measured in the vine leaves and must quality parameters were analyzed at the time of harvest.

The nutrient data showed an increase in the concentration of potassium in leaves in the treatment with the autochthonous Trichoderma harzianum strain compared to the other two treatments. In the case of the analysis of the quality of the grapes, an increase in the concentrations of malic acid, total acidity, potassium, probable º and density of the must was also observed in the treatment with the autochthonous Trichodermacompared to the rest of the treatments.

Thanks to the Ministry of Education, Culture and Sports (Spain) for the grant awarded to Laura Zanfaño González (FPU 20/03040), to the own research program of the University of León 2022 for the grant awarded to Daniela Ramírez Lozano. As well as the project acronym LOWPHWINE, reference IDI-20210391.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Zanfaño L.1*, Carro-Huerga G.1, Mayo-Prieto S.1, Rodríguez-González A.1, Ramírez-Lozano D.1, Gutiérrez S.2, Casquero P.A.1

1Grupo de Investigación de Ingeniería y Agricultura Sostenible (GUIIAS). Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León Av. Portugal 41, 24071 León, España.
2Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS). Área de Microbiología. Escuela de Ingeniería Agraria y Forestal. Campus de Ponferrada. Universidad de León. León. España.

Contact the author*

Keywords

Trichoderma harzianum, 6PP, potassium, quality of the grapes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Photoprotective extracts from agri-food waste to prevent the effect of light in rosé wines 

Light is responsible for adverse reactions in wine including the formation of unpleasant flavors, loss of vitamins or photodegradation of anthocyanins. Among them, the riboflavin degradation leads to the formation of undesirable volatile compounds, known as light-struck taste. These photo-chemical reactions could be avoided by simply using opaque packaging. However, most rosé wines are kept in transparent bottles due to different commercial reasons. Some agri-food waste extracts have been studied for their photoprotective action which turn to be highly correlated with phenolic content [1].

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.