terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Abstract

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).

The trials were carried out in two regular vine plantations (Vitis vinifera cv. Tempranillo). The experimental design was in randomized blocks with three treatments (Trichoderma harzianum autochthonous strain, 6PP and control) and 10 repetitions (plants) per block. A total of 6 applications of treatments were made on the entire vegetative part of the plant every 15 days. During the development of the test, levels of potassium, calcium and magnesium were measured in the vine leaves and must quality parameters were analyzed at the time of harvest.

The nutrient data showed an increase in the concentration of potassium in leaves in the treatment with the autochthonous Trichoderma harzianum strain compared to the other two treatments. In the case of the analysis of the quality of the grapes, an increase in the concentrations of malic acid, total acidity, potassium, probable º and density of the must was also observed in the treatment with the autochthonous Trichodermacompared to the rest of the treatments.

Thanks to the Ministry of Education, Culture and Sports (Spain) for the grant awarded to Laura Zanfaño González (FPU 20/03040), to the own research program of the University of León 2022 for the grant awarded to Daniela Ramírez Lozano. As well as the project acronym LOWPHWINE, reference IDI-20210391.

DOI:

Publication date: October 10, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Zanfaño L.1*, Carro-Huerga G.1, Mayo-Prieto S.1, Rodríguez-González A.1, Ramírez-Lozano D.1, Gutiérrez S.2, Casquero P.A.1

1Grupo de Investigación de Ingeniería y Agricultura Sostenible (GUIIAS). Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León Av. Portugal 41, 24071 León, España.
2Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS). Área de Microbiología. Escuela de Ingeniería Agraria y Forestal. Campus de Ponferrada. Universidad de León. León. España.

Contact the author*

Keywords

Trichoderma harzianum, 6PP, potassium, quality of the grapes

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs.

A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

‘Tempranillo Tinto’ is a black-berried Iberian cultivar that originated from a hybridization between cvs. ‘Benedicto’ and ‘Albillo Mayor’ [1]. Today, it is the third most widely grown wine grape cultivar worldwide with more than 200,000 hectares of vineyards mostly distributed along the Iberian Peninsula, where it is also known as ‘Cencibel’, ‘Tinta de Toro’, ‘Tinta Roriz’, and ‘Aragonez’, among other synonyms. Here, we quantified the intra-varietal genomic diversity in this cultivar through the study of 35 clones or ancient vines from seven different Iberian wine-making regions. A comparative analysis after Illumina whole-genome sequencing revealed the presence of 1,120 clonal single nucleotide variants (SNVs).

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.