terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Abstract

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest. The experiment was carried out during two consecutive seasons (2021 and 2022), in vineyards of Garnacha Tinta (in Badajoz), Tempranillo (in Valladolid), Syrah (in Albacete) and Mencía (in Lugo). Polyphenolic substances were extracted from grapes and then identified and quantified by high performance liquid chromatography. Compounds grouped into anthocyanins and non-anthocyanins were analyzed. In 2021, pre-sprouting irrigation tended to cause a decrease in the concentration of both anthocyanin and non-anthocyanin compounds, although this was only significant in the case of Syrah flavanols compounds. In 2022, the effect of soil water recharge was more noticeable. In relation to anthocyanin compounds, RP significantly reduced the concentration of monoglucoside, acetylated and coumarilated anthocyanins in Tempranillo, as well as the values of delphinidin, petunidin, peonidin and malvidin derivatives, while in the rest of the varieties the values remained unaffected. The RP treatment, compared to R, tended to increase the concentration values of flavonols and phenolic acids in Tempranillo and decrease that of flavonols in Syrah. The effect of pre-sprouting recharge irrigation was highly dependent on the year and the characteristics of each vineyard.

Acknowledgements: Grant PID2019-105039RR-C4 funded by MCIN/AEI/ 10.13039/501100011033.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Poster

Authors

D. Moreno1, J. Yuste2, A. Montoro3, J.J. Cancela4, D. Martínez-Porro2, I. Torija3,  M. Rodríguez-Febereiro4, M. Vilanova5, L.A. Mancha1, D. Uriarte1

1Centro de Investigaciones Científicas y Tecnológicas de Extremadura, 06187 Badajoz (España)
2Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid (España)
3Instituto Técnico Agronómico Provincial, 02007 Albacete (España)
4Universidade de Santiago de Compostela – EPSE, 27002 Lugo (España)
5Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (España)

Contact the author*

Keywords

anthocyanins, deficit irrigation, non-anthocyanins, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).