terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Abstract

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest. The experiment was carried out during two consecutive seasons (2021 and 2022), in vineyards of Garnacha Tinta (in Badajoz), Tempranillo (in Valladolid), Syrah (in Albacete) and Mencía (in Lugo). Polyphenolic substances were extracted from grapes and then identified and quantified by high performance liquid chromatography. Compounds grouped into anthocyanins and non-anthocyanins were analyzed. In 2021, pre-sprouting irrigation tended to cause a decrease in the concentration of both anthocyanin and non-anthocyanin compounds, although this was only significant in the case of Syrah flavanols compounds. In 2022, the effect of soil water recharge was more noticeable. In relation to anthocyanin compounds, RP significantly reduced the concentration of monoglucoside, acetylated and coumarilated anthocyanins in Tempranillo, as well as the values of delphinidin, petunidin, peonidin and malvidin derivatives, while in the rest of the varieties the values remained unaffected. The RP treatment, compared to R, tended to increase the concentration values of flavonols and phenolic acids in Tempranillo and decrease that of flavonols in Syrah. The effect of pre-sprouting recharge irrigation was highly dependent on the year and the characteristics of each vineyard.

Acknowledgements: Grant PID2019-105039RR-C4 funded by MCIN/AEI/ 10.13039/501100011033.

DOI:

Publication date: October 25, 2023

Issue: ICGWS 2023

Type: Poster

Authors

D. Moreno1, J. Yuste2, A. Montoro3, J.J. Cancela4, D. Martínez-Porro2, I. Torija3,  M. Rodríguez-Febereiro4, M. Vilanova5, L.A. Mancha1, D. Uriarte1

1Centro de Investigaciones Científicas y Tecnológicas de Extremadura, 06187 Badajoz (España)
2Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid (España)
3Instituto Técnico Agronómico Provincial, 02007 Albacete (España)
4Universidade de Santiago de Compostela – EPSE, 27002 Lugo (España)
5Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (España)

Contact the author*

Keywords

anthocyanins, deficit irrigation, non-anthocyanins, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Molecularly imprinted polymers: an innovative strategy for harvesting polyphenoles from grape seed extracts

Multiple sclerosis (MS) is a multifactorial autoimmune disease associating demyelination and axonal degeneration developing in young adults and affecting 2–3 million people worldwide. Plant polyphenols endowed with many therapeutic benefits associated with anti-inflammatory and antioxidant properties represent highly interesting new potential therapeutic strategies. We recently showed the safety and high efficiency of grape seed extract (GSE), a complex mixture of polyphenolics compounds comprising notably flavonoids and proanthocyanidins, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.