terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Abstract

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot,leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors. However, at local scale, several other environmental factors also contribute to the overall berry composition variability between nearby vineyards and the impact of each individual factor is difficult to identify. In this context, the objective of our study was to clarify the effect of temperature variability across a network of vineyards from the Saint-Emilion and Pomerol wine producing areas, by selecting well-characterized Merlot plots presenting significant temperature differences and gradients at various time scales linked to environmental factors[2].

The selected sites were characterized by similar soils, vine age and training system. The average temperature difference during the ripening period was about 2°C between the coldest and warmest sites. Samples of 20 to 50 berries were collected at different phenological stages from véraison to maturity in 2019 and 2020. In order to further investigate the putative impact of cluster exposure to solar radiation, the biochemical composition of berries in clusters from each side of differently oriented rows (E/W or N/S) was evaluated separately and combined with RNA-seq technology to screen differentially expressed genes at the transcriptome level.

Results showed significant effects on grape composition and gene expression profiles in relation with temperature, site, and bunch azimuth, with a noteworthy impact of temperature and solar radiation exposure on anthocyanin content in grape skins.

Acknowledgements: this project was supported by “Conseil Interprofessionnel des Vins de Bordeaux “ (CIVB) n°51640/18008/9/10

References :

  1. Arrizabalaga-Arriazu, M. et al, (2020). High temperature and elevated CO2 modify berry composition of different clones of grapevine (Vitis vinifera L.) cv. Tempranillo, Front. Plant Sci. dec 2020, 11:603687. doi: 10.3389/fpls.2020.603687
  2. de Rességuier L et al (2020). Temperature variability at local scale in the Bordeaux area. Relations with environmental factors and impact on vine phenology. Front Plant Sci. may 20,11:515. doi: 10.3389/fpls.2020.00515

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Ghislaine Hilbert-Masson1, Christel Renaud1, Philippe Pieri1, Laure de Rességuier1, Cécile Thibon2, Céline Cholet2, David Lecourieux1, Sabine Guillaumie1, Nathalie Ollat1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France / Bordeaux Sciences Agro, 33170 Gradignan, France

Contact the author*

Keywords

vineyard, Merlot, climate change, solar radiation, metabolites, anthocyanins

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.