terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Abstract

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot,leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors. However, at local scale, several other environmental factors also contribute to the overall berry composition variability between nearby vineyards and the impact of each individual factor is difficult to identify. In this context, the objective of our study was to clarify the effect of temperature variability across a network of vineyards from the Saint-Emilion and Pomerol wine producing areas, by selecting well-characterized Merlot plots presenting significant temperature differences and gradients at various time scales linked to environmental factors[2].

The selected sites were characterized by similar soils, vine age and training system. The average temperature difference during the ripening period was about 2°C between the coldest and warmest sites. Samples of 20 to 50 berries were collected at different phenological stages from véraison to maturity in 2019 and 2020. In order to further investigate the putative impact of cluster exposure to solar radiation, the biochemical composition of berries in clusters from each side of differently oriented rows (E/W or N/S) was evaluated separately and combined with RNA-seq technology to screen differentially expressed genes at the transcriptome level.

Results showed significant effects on grape composition and gene expression profiles in relation with temperature, site, and bunch azimuth, with a noteworthy impact of temperature and solar radiation exposure on anthocyanin content in grape skins.

Acknowledgements: this project was supported by “Conseil Interprofessionnel des Vins de Bordeaux “ (CIVB) n°51640/18008/9/10

References :

  1. Arrizabalaga-Arriazu, M. et al, (2020). High temperature and elevated CO2 modify berry composition of different clones of grapevine (Vitis vinifera L.) cv. Tempranillo, Front. Plant Sci. dec 2020, 11:603687. doi: 10.3389/fpls.2020.603687
  2. de Rességuier L et al (2020). Temperature variability at local scale in the Bordeaux area. Relations with environmental factors and impact on vine phenology. Front Plant Sci. may 20,11:515. doi: 10.3389/fpls.2020.00515

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Ghislaine Hilbert-Masson1, Christel Renaud1, Philippe Pieri1, Laure de Rességuier1, Cécile Thibon2, Céline Cholet2, David Lecourieux1, Sabine Guillaumie1, Nathalie Ollat1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882 Villenave d’Ornon, France
2 Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d’Ornon, France / Bordeaux Sciences Agro, 33170 Gradignan, France

Contact the author*

Keywords

vineyard, Merlot, climate change, solar radiation, metabolites, anthocyanins

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.