terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Abstract

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock. Considering the increasing pressure of the biotic and abiotic stresses, it is utmost necessary to also evaluate the effects of drought on the microbiome associated to grapevine in a sensitive Mediterranean region (Alentejo – Portugal).

In this study we characterize the diversity and the structure of the soil microbial community of the drought tolerant Syrah cultivar under long-term irrigation experiment (five years) with three levels (100% ETc – FI; 50% ETc – DI; rain-fed – NI). Metabarcoding of bacteria (16S rRNA subregion) and fungi (ITS region) was applied on the same soil samples. Also soil chemical analysis are being integrated with genomic data.

Although the richness and evenness indexes for alpha diversity did not show strong differences among the irrigation strategies for neither of the targeted microorganisms, beta diversity revealed statistically supported community differentiation. Across all samples the top three bacterial phyla were Pseudomonadota, Actinobacteriota, and Bacteroidota with a total relative abundance of 60%. Regarding the most represented bacterial species across samples, Gaiella occulta, an uncultured actinobacteria first described in deep mineral waters in Portugal, is shown with prevalence in DI samples with more than 10% of total ASVs.

Next, we will predict communities functionalities, bacterial networks, according to soil chemistry data and compare them with the soils’ samples obtained in July 2023.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Gianmaria Califano1,2*, Júlio Maciel1Olfa Zarrouk3,4, Miguel Damásio5, Jose Silvestre5, Ana Margarida Fortes1,2

1Faculdade de Ciências, University of Lisbon, Portugal
2BioISI, Faculdade de Ciências, University of Lisbon, Portugal
3LEAF – Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, ISA-ULisboa, Lisboa, Portugal
4COLAB, Torres Vedras, Portugal
5INIAV, Polo de Dois Portos, Portugal

Contact the author*

Keywords

soil microbiome, metabarcoding, grapevine, Syrah, drought, crop sustainability

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

The evolution of the aromatic composition of carbonic maceration wines

The vinification by Carbonic maceration (CM) involves the process whereby the whole bunches are subjected to anaerobic conditions during several days. In this anaerobic condition, the grape endogenous enzymes begin an intracellular fermentation. This situation favors that whole grapes split open and release their juice into the tank, increasing the liquid phase that is fermented by yeasts [1]. Then, two types of wines are obtained; one from the free-run liquid in the tank (FCM) and other from the liquid after pressing the whole grape bunches (PCM). PCM wines are recognized as high quality young wines because their fruity and floral aromas[2] that although they are very intense at the end of the winemaking they gradually disappear during conservation.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.