terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Abstract

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock. Considering the increasing pressure of the biotic and abiotic stresses, it is utmost necessary to also evaluate the effects of drought on the microbiome associated to grapevine in a sensitive Mediterranean region (Alentejo – Portugal).

In this study we characterize the diversity and the structure of the soil microbial community of the drought tolerant Syrah cultivar under long-term irrigation experiment (five years) with three levels (100% ETc – FI; 50% ETc – DI; rain-fed – NI). Metabarcoding of bacteria (16S rRNA subregion) and fungi (ITS region) was applied on the same soil samples. Also soil chemical analysis are being integrated with genomic data.

Although the richness and evenness indexes for alpha diversity did not show strong differences among the irrigation strategies for neither of the targeted microorganisms, beta diversity revealed statistically supported community differentiation. Across all samples the top three bacterial phyla were Pseudomonadota, Actinobacteriota, and Bacteroidota with a total relative abundance of 60%. Regarding the most represented bacterial species across samples, Gaiella occulta, an uncultured actinobacteria first described in deep mineral waters in Portugal, is shown with prevalence in DI samples with more than 10% of total ASVs.

Next, we will predict communities functionalities, bacterial networks, according to soil chemistry data and compare them with the soils’ samples obtained in July 2023.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Gianmaria Califano1,2*, Júlio Maciel1Olfa Zarrouk3,4, Miguel Damásio5, Jose Silvestre5, Ana Margarida Fortes1,2

1Faculdade de Ciências, University of Lisbon, Portugal
2BioISI, Faculdade de Ciências, University of Lisbon, Portugal
3LEAF – Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, ISA-ULisboa, Lisboa, Portugal
4COLAB, Torres Vedras, Portugal
5INIAV, Polo de Dois Portos, Portugal

Contact the author*

Keywords

soil microbiome, metabarcoding, grapevine, Syrah, drought, crop sustainability

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

Ultra-High Pressure Homogenization (UHPH): a technique that allows the reduction of SO2 in winemaking

Ultra-High Pressure Homogenization (UHPH) is an innovative, efficient and non-thermal technology that can be applied at different stages in winemaking in order to reduce or avoid the use of sulphites. During 2022 vintage, a batch of Xarel·lo must was processed by UHPH at 300 MPa with an inlet temperature (Ti) of 4 ºC. In order to verify the influence of the UHPH treatment in wine characteristics, alcoholic fermentations with this must (UHPH) were carried out and compared with a control batch (without SO2 addition (C)) and a sulphited batch, in which 60 mg/L of total SO2 (SO2) were added.

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.

A sensometabolomic approach to understand wine mouthfeel percepts

Targeted analytical methods can overlook compounds that are a priori unknown to play a role in the mouthfeel sensations. This limitation can be overcome with the information provided by untargeted metabolomic analysis using UPLC‐QTOF-MS. To this end, an untargeted metabolomic approach applied to 42 red wines has allowed development of a model with predictive capacity by cross-validation for the “dry”, “oily” and “unctuous” sensations perceived by a sensory panel. The optimal PLS model for “dry” retained compounds with positive regression coefficients (≥ 0.17) including a trimer procyanidin, a peptide, and four anthocyanins.

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.