terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Abstract

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock. Considering the increasing pressure of the biotic and abiotic stresses, it is utmost necessary to also evaluate the effects of drought on the microbiome associated to grapevine in a sensitive Mediterranean region (Alentejo – Portugal).

In this study we characterize the diversity and the structure of the soil microbial community of the drought tolerant Syrah cultivar under long-term irrigation experiment (five years) with three levels (100% ETc – FI; 50% ETc – DI; rain-fed – NI). Metabarcoding of bacteria (16S rRNA subregion) and fungi (ITS region) was applied on the same soil samples. Also soil chemical analysis are being integrated with genomic data.

Although the richness and evenness indexes for alpha diversity did not show strong differences among the irrigation strategies for neither of the targeted microorganisms, beta diversity revealed statistically supported community differentiation. Across all samples the top three bacterial phyla were Pseudomonadota, Actinobacteriota, and Bacteroidota with a total relative abundance of 60%. Regarding the most represented bacterial species across samples, Gaiella occulta, an uncultured actinobacteria first described in deep mineral waters in Portugal, is shown with prevalence in DI samples with more than 10% of total ASVs.

Next, we will predict communities functionalities, bacterial networks, according to soil chemistry data and compare them with the soils’ samples obtained in July 2023.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Gianmaria Califano1,2*, Júlio Maciel1Olfa Zarrouk3,4, Miguel Damásio5, Jose Silvestre5, Ana Margarida Fortes1,2

1Faculdade de Ciências, University of Lisbon, Portugal
2BioISI, Faculdade de Ciências, University of Lisbon, Portugal
3LEAF – Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, ISA-ULisboa, Lisboa, Portugal
4COLAB, Torres Vedras, Portugal
5INIAV, Polo de Dois Portos, Portugal

Contact the author*

Keywords

soil microbiome, metabarcoding, grapevine, Syrah, drought, crop sustainability

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.