terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Evaluation of phenology, agronomic and oenological quality in minority wine varieties in Madrid as a strategy for adaptation to climate change

Evaluation of phenology, agronomic and oenological quality in minority wine varieties in Madrid as a strategy for adaptation to climate change

Abstract

The main phenological stages (budburst, flowering, veraison, and ripeness) and the fruit composition of 34 Spanish minority varieties were studied to determine their cultivation potential and help winegrowers adapt their production systems to climate change conditions. In total, 4 control cultivars, and 30 minority varieties from central Spain were studied during a period of 3 campaigns, in the ampelographic collection “El Encín”, in Alcalá de Henares, Madrid. Agronomic and oenological characteristics such as yield, and total soluble solids concentration have been monitored.

Periods of expression of the main phenological stages were identified; sprouting, for 3 to 4 weeks; 9 days of flowering, appearance of veraison for 4 weeks and a sprouting period to harvest that occurs between 20 and 30 weeks. The results allow us to classify the varieties, according to the moment of their maturation (early, medium, and late in all varieties, plus very early and very late, in red varieties only) and with an average yield per plant (low, medium, and high) ranging from 200 to 1,200 g/plant.  

The reduction of the usual phenology periods and decrease in the acidity of musts, increase in pH, and concentration of sugars early, are considered negative effects of climate change [1]. The composition of the fruit is reflected in the concentration of ºBrix, which ranged from 15.8 – 27.1 ºBrix; pH, from 2.90 and 4.19; total acidity between 1.48 and 6.83 g/L of tartaric acid and malic acid between 0.16 and 3.70 g/L. Minority varieties tend to thrive in increasingly warm conditions, with periods of late sprouting and early ripening, which can help combat the risk of late frosts [2].

It is suggested that late or very late ripening varieties, which currently manage to ripen in warm conditions, with a sufficient accumulation of total soluble solids (20-22 ºBrix), high acidity values, and yields higher than 0.5 kg/plant, can be cultivated as new plant material for the mitigation of the effects of climate change in the viticulture of central Spain.

Acknowledgments: Project RTI2018-101085-R-C31 (MINORVIN) funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe. F.E.E-R. has received a grant (PRE2019-089073) funded by MCIN/AEI/ 10.13039/501100011033 and ESF Investing in your future.

References:

1)  Muñoz-Organero, G. et al. (2022). Phenological Study of 53 Spanish Minority Grape Varieties to Search for Adaptation of Vitiviniculture to Climate Change Conditions. Horticulturae 2022, 8, 984. https://doi.org/10.3390/horticulturae8110984

2)  Clingeleffer, P.R. & Davis, H.P. (2022). Assessment of phenology, growth characteristics and berry composition in a hot Australian climate to identify wine cultivars adapted to climate change. Australian Journal of Grape and Wine Research., 28: 255-275, DOI: 10.1111/ajgw.12544

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Espinosa-Roldán F. E.1*, Muñoz-Organero G.1, Martinez De Toda F.2, Crespo García J.1, Fernandez-Pastor M.1, Sanchez V. 1, Cabello F.1, García-Díaz A.1

1Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Finca El Encín, 28805 Alcalá de Henares, Spain
2ICVV (Universidad de La Rioja, CSIC, Gobierno de La Rioja), c/ Madre de Dios, 51, 26006 Logroño, Spain

Contact the author*

Keywords

phenology, climate change, minority grape varieties, ripeness

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Agronomic and oenological behavior of the minority Mandón variety on two rootstocks in the D.O. Arribes

A large population of vines of the Mandón minority red variety (synonymous with Garró) has been located in old vineyards of the D.O. Arribes (Zamora and Salamanca) to conserve and recover this minority variety. The wines made with this variety are characterized by their good structure and color, interesting harmony, an excellently low pH, with high acidity, as well as complex aromas of blue fruits and a marked and expressive minerality.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.