terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Evaluation of phenology, agronomic and oenological quality in minority wine varieties in Madrid as a strategy for adaptation to climate change

Evaluation of phenology, agronomic and oenological quality in minority wine varieties in Madrid as a strategy for adaptation to climate change

Abstract

The main phenological stages (budburst, flowering, veraison, and ripeness) and the fruit composition of 34 Spanish minority varieties were studied to determine their cultivation potential and help winegrowers adapt their production systems to climate change conditions. In total, 4 control cultivars, and 30 minority varieties from central Spain were studied during a period of 3 campaigns, in the ampelographic collection “El Encín”, in Alcalá de Henares, Madrid. Agronomic and oenological characteristics such as yield, and total soluble solids concentration have been monitored.

Periods of expression of the main phenological stages were identified; sprouting, for 3 to 4 weeks; 9 days of flowering, appearance of veraison for 4 weeks and a sprouting period to harvest that occurs between 20 and 30 weeks. The results allow us to classify the varieties, according to the moment of their maturation (early, medium, and late in all varieties, plus very early and very late, in red varieties only) and with an average yield per plant (low, medium, and high) ranging from 200 to 1,200 g/plant.  

The reduction of the usual phenology periods and decrease in the acidity of musts, increase in pH, and concentration of sugars early, are considered negative effects of climate change [1]. The composition of the fruit is reflected in the concentration of ºBrix, which ranged from 15.8 – 27.1 ºBrix; pH, from 2.90 and 4.19; total acidity between 1.48 and 6.83 g/L of tartaric acid and malic acid between 0.16 and 3.70 g/L. Minority varieties tend to thrive in increasingly warm conditions, with periods of late sprouting and early ripening, which can help combat the risk of late frosts [2].

It is suggested that late or very late ripening varieties, which currently manage to ripen in warm conditions, with a sufficient accumulation of total soluble solids (20-22 ºBrix), high acidity values, and yields higher than 0.5 kg/plant, can be cultivated as new plant material for the mitigation of the effects of climate change in the viticulture of central Spain.

Acknowledgments: Project RTI2018-101085-R-C31 (MINORVIN) funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe. F.E.E-R. has received a grant (PRE2019-089073) funded by MCIN/AEI/ 10.13039/501100011033 and ESF Investing in your future.

References:

1)  Muñoz-Organero, G. et al. (2022). Phenological Study of 53 Spanish Minority Grape Varieties to Search for Adaptation of Vitiviniculture to Climate Change Conditions. Horticulturae 2022, 8, 984. https://doi.org/10.3390/horticulturae8110984

2)  Clingeleffer, P.R. & Davis, H.P. (2022). Assessment of phenology, growth characteristics and berry composition in a hot Australian climate to identify wine cultivars adapted to climate change. Australian Journal of Grape and Wine Research., 28: 255-275, DOI: 10.1111/ajgw.12544

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Espinosa-Roldán F. E.1*, Muñoz-Organero G.1, Martinez De Toda F.2, Crespo García J.1, Fernandez-Pastor M.1, Sanchez V. 1, Cabello F.1, García-Díaz A.1

1Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Finca El Encín, 28805 Alcalá de Henares, Spain
2ICVV (Universidad de La Rioja, CSIC, Gobierno de La Rioja), c/ Madre de Dios, 51, 26006 Logroño, Spain

Contact the author*

Keywords

phenology, climate change, minority grape varieties, ripeness

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Influence of p-Coumaric Acid and Micronutrients on Growth and 4-Ethylphenol Production by Brettanomyces bruxellensis

The wine spoilage caused by Brettanomyces bruxellensis is one of the global concerns for winemakers. Detecting the presence of B. bruxellensis using routine laboratory culture techniques becomes challenging when cells enter the viable but not culturable (VBNC) state. This study aims to investigate the impact of p-coumaric acid (a volatile phenol precursor) and micronutrients on B. bruxellensis’ culturability, viability, and volatile phenol production under sulfite stress. In red wine, exposure to a high sulfite dose (100.00 mg L-1 potassium metabisulfite) resulted in immediate cell death, followed by a recovery of culturability after two weeks.

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

Comparison of the effects of hormone- and natural-based elicitors on key metabolic pathways in cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of application of three elicitors (Vitalfit, Fruitel, and Protone) in Tempranillo.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).