terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Evaluation of phenology, agronomic and oenological quality in minority wine varieties in Madrid as a strategy for adaptation to climate change

Evaluation of phenology, agronomic and oenological quality in minority wine varieties in Madrid as a strategy for adaptation to climate change

Abstract

The main phenological stages (budburst, flowering, veraison, and ripeness) and the fruit composition of 34 Spanish minority varieties were studied to determine their cultivation potential and help winegrowers adapt their production systems to climate change conditions. In total, 4 control cultivars, and 30 minority varieties from central Spain were studied during a period of 3 campaigns, in the ampelographic collection “El Encín”, in Alcalá de Henares, Madrid. Agronomic and oenological characteristics such as yield, and total soluble solids concentration have been monitored.

Periods of expression of the main phenological stages were identified; sprouting, for 3 to 4 weeks; 9 days of flowering, appearance of veraison for 4 weeks and a sprouting period to harvest that occurs between 20 and 30 weeks. The results allow us to classify the varieties, according to the moment of their maturation (early, medium, and late in all varieties, plus very early and very late, in red varieties only) and with an average yield per plant (low, medium, and high) ranging from 200 to 1,200 g/plant.  

The reduction of the usual phenology periods and decrease in the acidity of musts, increase in pH, and concentration of sugars early, are considered negative effects of climate change [1]. The composition of the fruit is reflected in the concentration of ºBrix, which ranged from 15.8 – 27.1 ºBrix; pH, from 2.90 and 4.19; total acidity between 1.48 and 6.83 g/L of tartaric acid and malic acid between 0.16 and 3.70 g/L. Minority varieties tend to thrive in increasingly warm conditions, with periods of late sprouting and early ripening, which can help combat the risk of late frosts [2].

It is suggested that late or very late ripening varieties, which currently manage to ripen in warm conditions, with a sufficient accumulation of total soluble solids (20-22 ºBrix), high acidity values, and yields higher than 0.5 kg/plant, can be cultivated as new plant material for the mitigation of the effects of climate change in the viticulture of central Spain.

Acknowledgments: Project RTI2018-101085-R-C31 (MINORVIN) funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe. F.E.E-R. has received a grant (PRE2019-089073) funded by MCIN/AEI/ 10.13039/501100011033 and ESF Investing in your future.

References:

1)  Muñoz-Organero, G. et al. (2022). Phenological Study of 53 Spanish Minority Grape Varieties to Search for Adaptation of Vitiviniculture to Climate Change Conditions. Horticulturae 2022, 8, 984. https://doi.org/10.3390/horticulturae8110984

2)  Clingeleffer, P.R. & Davis, H.P. (2022). Assessment of phenology, growth characteristics and berry composition in a hot Australian climate to identify wine cultivars adapted to climate change. Australian Journal of Grape and Wine Research., 28: 255-275, DOI: 10.1111/ajgw.12544

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Espinosa-Roldán F. E.1*, Muñoz-Organero G.1, Martinez De Toda F.2, Crespo García J.1, Fernandez-Pastor M.1, Sanchez V. 1, Cabello F.1, García-Díaz A.1

1Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Finca El Encín, 28805 Alcalá de Henares, Spain
2ICVV (Universidad de La Rioja, CSIC, Gobierno de La Rioja), c/ Madre de Dios, 51, 26006 Logroño, Spain

Contact the author*

Keywords

phenology, climate change, minority grape varieties, ripeness

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.