terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Abstract

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology. Adjusting the optimal technology to the features of each plot is highly advised, paying attention to soil, geographical, climatological and vineyard characteristics. Careful choice of the rootstock variety of the vines could be an effective tool aiming better drought tolerance. In our research we compare the almost exclusively used, but less tolerant Teleki 5.C rootstock with internationally renowned drought-tolerant rootstocks as 140 Ruggeri, 1103 Paulsen and 110 Richer on multiple vineyard plots, grafted with Furmint and Hárslevelű, the most important, indigenous varieties of Tokaj. In cooperation with the Insitute of Karcag we also study the water usage characteristics of the rootstock/scion combinations in different types of lysimeters. The grape berry in maturation is especially sensible to the combination of extreme heat and high levels of UV radiation, which is getting more frequent in some vintages. As a result, higher amount of phenolic compounds in the wine could deterior its sensory properties and aging potential, an effect observed with Furmint and Hárslevelű. Application of plastic nets providing shade in the critical period, these effects could be reduced according to our preliminary results.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Antal Kneip1*, Laura Varga1, Péter Balling1, György Zsigrai2, Tibor Kovács1, Péter Molnár1

1University of Tokaj-Hegyalja, Lórántffy Institute, Department of Viticulture and Oenology H-3950 Sárospatak, Eötvös út 7., Hungary
2Hungarian University of Agricultural and Life Sciences, Research Insistute of Karcag

Contact the author*

Keywords

climate change, cover crop, rootstock, shading net, Tokaj

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements.

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.