terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Abstract

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology. Adjusting the optimal technology to the features of each plot is highly advised, paying attention to soil, geographical, climatological and vineyard characteristics. Careful choice of the rootstock variety of the vines could be an effective tool aiming better drought tolerance. In our research we compare the almost exclusively used, but less tolerant Teleki 5.C rootstock with internationally renowned drought-tolerant rootstocks as 140 Ruggeri, 1103 Paulsen and 110 Richer on multiple vineyard plots, grafted with Furmint and Hárslevelű, the most important, indigenous varieties of Tokaj. In cooperation with the Insitute of Karcag we also study the water usage characteristics of the rootstock/scion combinations in different types of lysimeters. The grape berry in maturation is especially sensible to the combination of extreme heat and high levels of UV radiation, which is getting more frequent in some vintages. As a result, higher amount of phenolic compounds in the wine could deterior its sensory properties and aging potential, an effect observed with Furmint and Hárslevelű. Application of plastic nets providing shade in the critical period, these effects could be reduced according to our preliminary results.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Antal Kneip1*, Laura Varga1, Péter Balling1, György Zsigrai2, Tibor Kovács1, Péter Molnár1

1University of Tokaj-Hegyalja, Lórántffy Institute, Department of Viticulture and Oenology H-3950 Sárospatak, Eötvös út 7., Hungary
2Hungarian University of Agricultural and Life Sciences, Research Insistute of Karcag

Contact the author*

Keywords

climate change, cover crop, rootstock, shading net, Tokaj

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

Proper soil health assessments are crucial for sustainable cropland. Among the widely employed approaches, evaluating nematode community structure is particularly suitable. Traditionally, the taxonomic characterization of soil nematodes has relied on time-consuming morphology-based methods requiring experienced experts. However, molecular tools like high-throughput sequencing have emerged as efficient alternatives. In this study, we performed a metataxonomic analysis of soil samples collected from 57 vineyards in the DOCa Rioja region of Northern Spain, focusing on the impact of organic viticulture and cover cropping compared to integrated pest management (IPM) and tilling practices.

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).