terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

Abstract

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time. 

A factorial trial was established in a Merlot vineyard of the Maipo Valley in Chile with three pruning times (traditional winter pruning, E-L stage 1; late pruning at bud burst, E-L stage 4; and late pruning at 2-4 cm shoot, E-L 9) and two temperature conditions (ambient or elevated), and three replicates per treatment. HPLC analysis were performed and anthocyanin content and composition were evaluated for each condition. Merlot grapes of any pruning and temperature condition had a predominance of Malvidin type anthocyanins, but total pigments were about 30% less in grapes grown under high temperatures, and most of the decrease was explained by less malvidin-3-glucosides. Late pruning slightly increased glucosilated anthocyanins when fruit maturity was reached under ambient conditions, but when temperature was increased about 1ºC with the OTC only late pruning at budbreak was beneficial, while late pruning at E-L 9 decreased anthocyanin content. Delphinidin and cyanidin glucosides were particularly affected by pruning time and temperature. Most acylated and coumaric forms showed only small changes, but total anthocyanins in a high temperature scenario were improved by a delay in pruning up to budbreak and reduced when pruning was with 2-4 cm shoots.

The results on fruit anthocyanins show the potential benefits of changes in pruning time as a tool to deal with the model temperature increase.

Acknowledgements: Fondecyt 11200703.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. Cecilia Peppi1*, Carolina Salazar1, Marisol Reyes2

1Instituto de Investigaciones Agropecuarias (INIA) La Platina, Santa Rosa 11610
2Instituto de Investigaciones Agropecuarias (INIA) Raihuén, Esperanza s/n, Estación Villa Alegre. Chile

Contact the author*

Keywords

berry color, climate change, maturity, budbreak, malvidin

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.