terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

Abstract

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time. 

A factorial trial was established in a Merlot vineyard of the Maipo Valley in Chile with three pruning times (traditional winter pruning, E-L stage 1; late pruning at bud burst, E-L stage 4; and late pruning at 2-4 cm shoot, E-L 9) and two temperature conditions (ambient or elevated), and three replicates per treatment. HPLC analysis were performed and anthocyanin content and composition were evaluated for each condition. Merlot grapes of any pruning and temperature condition had a predominance of Malvidin type anthocyanins, but total pigments were about 30% less in grapes grown under high temperatures, and most of the decrease was explained by less malvidin-3-glucosides. Late pruning slightly increased glucosilated anthocyanins when fruit maturity was reached under ambient conditions, but when temperature was increased about 1ºC with the OTC only late pruning at budbreak was beneficial, while late pruning at E-L 9 decreased anthocyanin content. Delphinidin and cyanidin glucosides were particularly affected by pruning time and temperature. Most acylated and coumaric forms showed only small changes, but total anthocyanins in a high temperature scenario were improved by a delay in pruning up to budbreak and reduced when pruning was with 2-4 cm shoots.

The results on fruit anthocyanins show the potential benefits of changes in pruning time as a tool to deal with the model temperature increase.

Acknowledgements: Fondecyt 11200703.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. Cecilia Peppi1*, Carolina Salazar1, Marisol Reyes2

1Instituto de Investigaciones Agropecuarias (INIA) La Platina, Santa Rosa 11610
2Instituto de Investigaciones Agropecuarias (INIA) Raihuén, Esperanza s/n, Estación Villa Alegre. Chile

Contact the author*

Keywords

berry color, climate change, maturity, budbreak, malvidin

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.