terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

Abstract

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time. 

A factorial trial was established in a Merlot vineyard of the Maipo Valley in Chile with three pruning times (traditional winter pruning, E-L stage 1; late pruning at bud burst, E-L stage 4; and late pruning at 2-4 cm shoot, E-L 9) and two temperature conditions (ambient or elevated), and three replicates per treatment. HPLC analysis were performed and anthocyanin content and composition were evaluated for each condition. Merlot grapes of any pruning and temperature condition had a predominance of Malvidin type anthocyanins, but total pigments were about 30% less in grapes grown under high temperatures, and most of the decrease was explained by less malvidin-3-glucosides. Late pruning slightly increased glucosilated anthocyanins when fruit maturity was reached under ambient conditions, but when temperature was increased about 1ºC with the OTC only late pruning at budbreak was beneficial, while late pruning at E-L 9 decreased anthocyanin content. Delphinidin and cyanidin glucosides were particularly affected by pruning time and temperature. Most acylated and coumaric forms showed only small changes, but total anthocyanins in a high temperature scenario were improved by a delay in pruning up to budbreak and reduced when pruning was with 2-4 cm shoots.

The results on fruit anthocyanins show the potential benefits of changes in pruning time as a tool to deal with the model temperature increase.

Acknowledgements: Fondecyt 11200703.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. Cecilia Peppi1*, Carolina Salazar1, Marisol Reyes2

1Instituto de Investigaciones Agropecuarias (INIA) La Platina, Santa Rosa 11610
2Instituto de Investigaciones Agropecuarias (INIA) Raihuén, Esperanza s/n, Estación Villa Alegre. Chile

Contact the author*

Keywords

berry color, climate change, maturity, budbreak, malvidin

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

High-throughput sequencing analysis based on nematode indices revealed healthier soils of organic vineyards 

Proper soil health assessments are crucial for sustainable cropland. Among the widely employed approaches, evaluating nematode community structure is particularly suitable. Traditionally, the taxonomic characterization of soil nematodes has relied on time-consuming morphology-based methods requiring experienced experts. However, molecular tools like high-throughput sequencing have emerged as efficient alternatives. In this study, we performed a metataxonomic analysis of soil samples collected from 57 vineyards in the DOCa Rioja region of Northern Spain, focusing on the impact of organic viticulture and cover cropping compared to integrated pest management (IPM) and tilling practices.

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Defoliation combined with exogenous ABA application results in slower ripening and improved anthocyanin profile

Reducing sugar accumulation in grape (Vitis vinifera L.) berries may be a way to mitigate the effect of climate change. Managing canopy and crop load is an effective way to do so, however, reducing canopy size has been demonstrated to induce undesirable effects on anthocyanins. The aim of this study was to test if an application of exogenous ABA on the grape berries of defoliated vines (⅔ of the leaves removed) can result in slower sugar accumulation while maintaining grape and wine quality. An experiment with defoliation and exogenous ABA application on directly on clusters (factorial design 2×2) was performed with ‘Tempranillo’ fruit-bearing cuttings.