terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

Abstract

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time. 

A factorial trial was established in a Merlot vineyard of the Maipo Valley in Chile with three pruning times (traditional winter pruning, E-L stage 1; late pruning at bud burst, E-L stage 4; and late pruning at 2-4 cm shoot, E-L 9) and two temperature conditions (ambient or elevated), and three replicates per treatment. HPLC analysis were performed and anthocyanin content and composition were evaluated for each condition. Merlot grapes of any pruning and temperature condition had a predominance of Malvidin type anthocyanins, but total pigments were about 30% less in grapes grown under high temperatures, and most of the decrease was explained by less malvidin-3-glucosides. Late pruning slightly increased glucosilated anthocyanins when fruit maturity was reached under ambient conditions, but when temperature was increased about 1ºC with the OTC only late pruning at budbreak was beneficial, while late pruning at E-L 9 decreased anthocyanin content. Delphinidin and cyanidin glucosides were particularly affected by pruning time and temperature. Most acylated and coumaric forms showed only small changes, but total anthocyanins in a high temperature scenario were improved by a delay in pruning up to budbreak and reduced when pruning was with 2-4 cm shoots.

The results on fruit anthocyanins show the potential benefits of changes in pruning time as a tool to deal with the model temperature increase.

Acknowledgements: Fondecyt 11200703.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. Cecilia Peppi1*, Carolina Salazar1, Marisol Reyes2

1Instituto de Investigaciones Agropecuarias (INIA) La Platina, Santa Rosa 11610
2Instituto de Investigaciones Agropecuarias (INIA) Raihuén, Esperanza s/n, Estación Villa Alegre. Chile

Contact the author*

Keywords

berry color, climate change, maturity, budbreak, malvidin

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

Chemical and microbiological evaluation of Ribeiro wines (NW Spain)

Wine produced under Designation of Origin (DOP) Ribeiro, the oldest DOP in Galicia (NW Spain), are elaborated using local grape cultivars, grown at the valleys of Miño, Avia and Arnoia rivers. The landscape formed by slopes and terraces and the peculiar climate of continental character, softened by the proximity of Atlantic Ocean, make it an area of excellent aptitude for vine cultivation. In addition, small-scale farming and the use of traditional techniques for vineyard management provide a great diversity to Ribeiro wines. This study presents the evaluation of red and white wines (bottled or bulk wines) from DOP Ribeiro, produced between years 2018-2022.

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions.