terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Abstract

Context and purpose of study – Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

 

Materials and methods – Three commercial vineyards per variety across Creation Wines (CN), Bosman Adama (BA), Paul Cluver Family Wines (PC) and Paul Wallace Wines (PW) were selected during the 2021/2022 growing season. Daily minimum and maximum temperatures were recorded (micro-climate) and berry reproductive parameters from Eichorn-Lorenz (E-L) stages 32 to 38 were monitored. Additionally anthocyanin content, colour density and total phenolic index were determined for Pinot Noir vineyards. Yield was determined at harvest and pruning weights were taken during the vine’s winter dormancy. Data was analysed using One-way ANOVA at a confidence level of 95%.

 

Results – Accumulated GDD was between 1188 and 1229°C days in Chardonnay vineyards and between 1220 and 1242°C days in Pinot Noir vineyards. Significant differences in berry reproductive parameters were observed between vineyards throughout the season for both varieties. For Bosman Adama, Chardonnay and Pinot Noir vineyards consistently produced the largest berries until harvest. Sugar concentrations ranged from 20 to 23 °Brix at harvest for all the vineyards and varieties. The ratio of yield to pruning weight varied from 3.2 to 5.0 which could be ascribed to the site, climate, and canopy management. These results suggest that Elgin and Walker Bay terroirs are suitable for the growth of Chardonnay and Pinot Noir.

DOI:

Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Emile MAJEWSKI1*, Erna BLANCQUAERT1, Zhanwu DAI2,3, Sam CRAUWELS4,5

1South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa
2Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
3University of the Chinese Academy of Sciences, Beijing 100049, China
4Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2 S), KU Leuven, B-3001 Leuven, Belgium
5Leuven Plant Institute (LPI), KU Leuven, B-3001 Leuven, Belgium

Contact the author*

Keywords

Terroir, Vitis vinifera L., climate, South Africa, cool climate

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality.

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Yeast mannoprotein characterization and their effect on Oenococcus oeni and malolactic fermentation

Mannoproteins are released at the end of alcoholic fermentation due to yeast autolysis [1]. It has been described a positive effect of these molecules on lactic acid bacteria growth [2]. The main objective of this work was the characterization of different mannoproteins extracted from active dry yeast (ADY) and the assessment of their effect on Oenococcus oeni and malolactic fermentation (MLF).