terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Oxidability of wines made from Spanish minority grape varieties

Oxidability of wines made from Spanish minority grape varieties

Abstract

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2]. The white wines studied were made with the following varieties: Albarín, Albillo, Doña Blanca, Godello, Legiruela, Malvasía, Puesta en Cruz, Rufete Blanco, Sauvignon Blanc, Verdejo and Viognier and the red wines with Bruñal, Cabernet Sauvignon, Cenicienta, Estaladiña, Juan García, Mandón, Mencía, Merenzao, Merlot, Negro Saurí, Prieto Picudo, Tempranillo, Tinta de Toro. The preliminary results obtained are very interesting and indicate that regardless of the winery, the wines of each variety have their own characteristics, showing a lower capacity to consume oxygen in white wines made with Puesta en Cruz, Rufete Blanco, Viognier or Albillo, which is reflected in their lower browning compared to wines made with Albarín, Verdejo or Sauvignon Blanc, which have a higher browning rate. In the case of red wines, those made with Mandón, Cenicienta or Juan García show a greater capacity to consume oxygen than those made with Negro Saurí, Merenzao or Estaladiña.

Acknowledgements: ITACyL for their financial support to Actividades de Investigación, Promoción de la Innovación y la Transferencia del Conocimiento en Sectores Estratégicos de Castilla y León: SECTOR VITIVINÍCOLA

References:

  1. Oliveira, C. M., et al. (2011) Oxidation mechanisms occurring in wines. Food Res. Int 44(5), 1115–1126 DOI 10.1016/j.foodres.2011.03.050
  2. Del Alamo-Sanza, M et al (2021) Air saturation methodology proposal for the analysis of wine oxygen consumption kinetics. Food Res. Int, DOI 10.1016/j.foodres.2021.110535

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

María del Alamo-Sanza*, Aitana de Torre, María Asensio-Cuadrado, Marioli Carrasco-Quiroz, Rubén del Barrio-Galán, Ana Martínez-Gil, Luis Miguel Cárcel-Cárcel, Teresa Garde-Cerdán, Ignacio Nevares

1Grupo UVaMOX-Universidad de Valladolid. Ava. Madrid 50 34001 Palencia

Contact the author*

Keywords

oxidation, wine, phenols, browning, oxygen consumption capacity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP).