terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Oxidability of wines made from Spanish minority grape varieties

Oxidability of wines made from Spanish minority grape varieties

Abstract

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2]. The white wines studied were made with the following varieties: Albarín, Albillo, Doña Blanca, Godello, Legiruela, Malvasía, Puesta en Cruz, Rufete Blanco, Sauvignon Blanc, Verdejo and Viognier and the red wines with Bruñal, Cabernet Sauvignon, Cenicienta, Estaladiña, Juan García, Mandón, Mencía, Merenzao, Merlot, Negro Saurí, Prieto Picudo, Tempranillo, Tinta de Toro. The preliminary results obtained are very interesting and indicate that regardless of the winery, the wines of each variety have their own characteristics, showing a lower capacity to consume oxygen in white wines made with Puesta en Cruz, Rufete Blanco, Viognier or Albillo, which is reflected in their lower browning compared to wines made with Albarín, Verdejo or Sauvignon Blanc, which have a higher browning rate. In the case of red wines, those made with Mandón, Cenicienta or Juan García show a greater capacity to consume oxygen than those made with Negro Saurí, Merenzao or Estaladiña.

Acknowledgements: ITACyL for their financial support to Actividades de Investigación, Promoción de la Innovación y la Transferencia del Conocimiento en Sectores Estratégicos de Castilla y León: SECTOR VITIVINÍCOLA

References:

  1. Oliveira, C. M., et al. (2011) Oxidation mechanisms occurring in wines. Food Res. Int 44(5), 1115–1126 DOI 10.1016/j.foodres.2011.03.050
  2. Del Alamo-Sanza, M et al (2021) Air saturation methodology proposal for the analysis of wine oxygen consumption kinetics. Food Res. Int, DOI 10.1016/j.foodres.2021.110535

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

María del Alamo-Sanza*, Aitana de Torre, María Asensio-Cuadrado, Marioli Carrasco-Quiroz, Rubén del Barrio-Galán, Ana Martínez-Gil, Luis Miguel Cárcel-Cárcel, Teresa Garde-Cerdán, Ignacio Nevares

1Grupo UVaMOX-Universidad de Valladolid. Ava. Madrid 50 34001 Palencia

Contact the author*

Keywords

oxidation, wine, phenols, browning, oxygen consumption capacity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Sugar accumulation disorder Berry Shrivel – from current knowledge towards novel hypothesis

In contrast to fruit and grape berry ripening, the biological processes causing ripening disorders are often much less understood, although shriveling disorders of fruits are manifold and contribute to yield losses and reduced fruit quality worldwide. Shrinking berries are a common feature for all shriveling disorders in grapevine although their timing of appearance during the berry ripening process and their underlying induction processes distinct them from each other. The sugar accumulation disorder Berry Shrivel (BS) is characterized by a suppression of sugar accumulation short after veraison resulting in berries low in sugar content and anthocyanins in berry skins, while the organic acid content is similar. Recent studies analyzed the biochemical, morphological and molecular processes affected in BS berries and linked early changes to the period of ripening onset [1,2].

Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces

The recovery of bioactive compounds from grape and wine by-products is currently an important objective for revaluation and sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds. The aim of this study was to evaluate the polysaccharide (PS) composition of extracts obtained from pomaces of different white and red grape varieties of Castilla y León. Grape pomaces were obtained after the pressing in the winemaking process.

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Effect on the grape and wine characteristics of cv. Tempranillo at 3 production levels

The vineyard has experienced a general increase in yields mainly due to the elevated use of technology which caused a quality loss of grapes in more than one case. A large percentage of the Spanish vineyard is covered by a Denomination of Origin which limits the productive level of the vineyards as one of its regulations. The maximum production limit is a variable characteristic of each vineyard and is not usually regulated by agronomic criteria, and this explains the fact that each vineyard can reach high quality with a totally different yield from that set by the Denomination of Origin.