terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Wine racking in the winery and the use of inerting gases

Wine racking in the winery and the use of inerting gases

Abstract

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.

The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases. In addition, inert gases were also used to protect the wine in the racking tank by blanketing the wine. Finally, a full-scale inerting study was carried out in a commercial winery during the racking of a white wine to evaluate the effectiveness of the use of different inert gases. Tank ullage space oxygen (HSO) and wine dissolved oxygen (DO) were monitored in different points during the wine racking.

Purging an empty tank with different inert gases was effective being the CO2:Ar (20:80) mixture clearly the most effective, requiring less gas volume to displace O2. The opposite result was found with N2 because it worked in dilution mode. Although from an economic viewpoint, the most recommendable gas was CO2.

The level of protection of the racked wine and the headspace over the racked wine in the empty destination tank differed depending on the gas used and the thickness (% of the tank volume) of the blanket formed with each gas. Based on the results obtained, purging with 25% of the empty tank volume of each inert gas is recommended to protect racked wine in a good cost-benefit way. To keep the headspace of the racking tank inert, blanketing with 50% of tank volume of Ar, CO2 or the mixture of both were sufficient. Applying different volumes of gas had little effect on the DO of the wine at the tank outlet.

Acknowledgements: This research has been funded by ITACyL through a collaboration agreement with the University of Valladolid and the Fundación del Parque Científico de la Universidad de Valladolid. This project has received funding from AEI and Ministry of Science and Innovation MICINN (RTC2019-007319-2 Oxiprestop Project). The authors would like to tank Carburos Metálicos (Air Products group) and IVG Colbachini S.p.A for their material Support.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Ignacio Nevares*, Rubén del Barrio Galán, Elena Pérez-Cardo, María Asensio-Cuadrado, Ana Martínez-Gil, Luis Miguel Cárcel, Alberto Gómez, Sonia Villanueva, Julio A. Pinto Solano, Carlos Moro González, and Maria del Alamo-Sanza

Grupo UVaMOX-Universidad de Valladolid. Avda. Madrid 50. 34001 Palencia, Spain

Contact the author*

Keywords

inert gases, racking wine, blanketing, oxygen, purging

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.