terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Wine racking in the winery and the use of inerting gases

Wine racking in the winery and the use of inerting gases

Abstract

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.

The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases. In addition, inert gases were also used to protect the wine in the racking tank by blanketing the wine. Finally, a full-scale inerting study was carried out in a commercial winery during the racking of a white wine to evaluate the effectiveness of the use of different inert gases. Tank ullage space oxygen (HSO) and wine dissolved oxygen (DO) were monitored in different points during the wine racking.

Purging an empty tank with different inert gases was effective being the CO2:Ar (20:80) mixture clearly the most effective, requiring less gas volume to displace O2. The opposite result was found with N2 because it worked in dilution mode. Although from an economic viewpoint, the most recommendable gas was CO2.

The level of protection of the racked wine and the headspace over the racked wine in the empty destination tank differed depending on the gas used and the thickness (% of the tank volume) of the blanket formed with each gas. Based on the results obtained, purging with 25% of the empty tank volume of each inert gas is recommended to protect racked wine in a good cost-benefit way. To keep the headspace of the racking tank inert, blanketing with 50% of tank volume of Ar, CO2 or the mixture of both were sufficient. Applying different volumes of gas had little effect on the DO of the wine at the tank outlet.

Acknowledgements: This research has been funded by ITACyL through a collaboration agreement with the University of Valladolid and the Fundación del Parque Científico de la Universidad de Valladolid. This project has received funding from AEI and Ministry of Science and Innovation MICINN (RTC2019-007319-2 Oxiprestop Project). The authors would like to tank Carburos Metálicos (Air Products group) and IVG Colbachini S.p.A for their material Support.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Ignacio Nevares*, Rubén del Barrio Galán, Elena Pérez-Cardo, María Asensio-Cuadrado, Ana Martínez-Gil, Luis Miguel Cárcel, Alberto Gómez, Sonia Villanueva, Julio A. Pinto Solano, Carlos Moro González, and Maria del Alamo-Sanza

Grupo UVaMOX-Universidad de Valladolid. Avda. Madrid 50. 34001 Palencia, Spain

Contact the author*

Keywords

inert gases, racking wine, blanketing, oxygen, purging

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).