terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Wine racking in the winery and the use of inerting gases

Wine racking in the winery and the use of inerting gases

Abstract

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.

The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases. In addition, inert gases were also used to protect the wine in the racking tank by blanketing the wine. Finally, a full-scale inerting study was carried out in a commercial winery during the racking of a white wine to evaluate the effectiveness of the use of different inert gases. Tank ullage space oxygen (HSO) and wine dissolved oxygen (DO) were monitored in different points during the wine racking.

Purging an empty tank with different inert gases was effective being the CO2:Ar (20:80) mixture clearly the most effective, requiring less gas volume to displace O2. The opposite result was found with N2 because it worked in dilution mode. Although from an economic viewpoint, the most recommendable gas was CO2.

The level of protection of the racked wine and the headspace over the racked wine in the empty destination tank differed depending on the gas used and the thickness (% of the tank volume) of the blanket formed with each gas. Based on the results obtained, purging with 25% of the empty tank volume of each inert gas is recommended to protect racked wine in a good cost-benefit way. To keep the headspace of the racking tank inert, blanketing with 50% of tank volume of Ar, CO2 or the mixture of both were sufficient. Applying different volumes of gas had little effect on the DO of the wine at the tank outlet.

Acknowledgements: This research has been funded by ITACyL through a collaboration agreement with the University of Valladolid and the Fundación del Parque Científico de la Universidad de Valladolid. This project has received funding from AEI and Ministry of Science and Innovation MICINN (RTC2019-007319-2 Oxiprestop Project). The authors would like to tank Carburos Metálicos (Air Products group) and IVG Colbachini S.p.A for their material Support.

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Ignacio Nevares*, Rubén del Barrio Galán, Elena Pérez-Cardo, María Asensio-Cuadrado, Ana Martínez-Gil, Luis Miguel Cárcel, Alberto Gómez, Sonia Villanueva, Julio A. Pinto Solano, Carlos Moro González, and Maria del Alamo-Sanza

Grupo UVaMOX-Universidad de Valladolid. Avda. Madrid 50. 34001 Palencia, Spain

Contact the author*

Keywords

inert gases, racking wine, blanketing, oxygen, purging

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Comparison of ancestral and traditional methods in the elaboration of sparkling wines; preliminary results

Top quality sparkling wines (SW) are mostly produced using the traditional method that implies a second fermentation into the bottle[1]. That is the case of sparkling wines of reputed AOC such as Champagne, Cava or Franciacorta. However, it seems that the first SW was elaborated using the ancestral method in which only one fermentation takes place[2]. That is the case of the classical SW from the AOC Blanquette de Limoux[3]. In both cases, SW age in the bottle during some time in contact with lees favoring yeast’s autolysis[4]. There is a lot of information about traditional method but only few exists about ancestral method. The aim of this work was to compare SW made by the ancestral method with SW made by the traditional method.