terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

Abstract

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1]. Therefore, the aim of this work was to study the effect of polysaccharide extracts obtained from white grape must and pomace on the volatile composition of a sparkling white wine and to compare them with the use of commercial mannoproteins.

The Verdejo sparkling wines were elaborated by the traditional method and the different extracts were added in the tirage liquor. Five experiences were carried out: control wine and wines with the addition of four extracts from white must, white pomace, and two commercial products rich in yeast polysaccharides. The second fermentation was carried out in closed bottles in contact with lees and after 9 months, the sparkling wines were riddled and disgorged, and they were analyzed after 3 months. Minor volatile compounds were extracted by headspace solid-phase microextraction and quantified using a gas chromatograph coupled to a mass detector.

Statistically significant differences were found for most of the volatile compounds evaluated by treatment effect. The sparkling wines treated with polysaccharide extracts from wine by-products showed higher contents of ethyl esters of straight-chain fatty acids, ethyl esters of branched-chain fatty acids, alcohol acetates, terpenes and vanillin derivates than control wines. Therefore, these extracts can favor the maintenance of high content of volatile compounds associated with fruity and floral notes.

Acknowledgements: INIA, AEI and MICINN for the founding provided for this study through the projects RTA2017-00005-C02-01 and PID2021-123361OR-C21.

References:
1)  Canalejo D. et al. (2022) Characterization of polysaccharide extracts recovered from different grape and winemaking products. Food Res. Int., 157, 111480, DOI 10.1016/j.foodres.2022.111480

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Silvia Pérez-Magariño1*, Estela Cano-Mozo1, Marta Bueno-Herrera1, Belén Ayestarán2, Zenaida Guadalupe2

1Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain.
2ICVV-Universidad de La Rioja, Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain.

Contact the author*

Keywords

polysaccharide extracts, sparkling wine, volatile compounds, by-products

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Distribution and sensory impact of new oak wood-derived compounds in wines

Despite the numerous research studies carried out in recent years, the study of wine aroma remains of great interest due to its complexity. Wine maturation in oak barrels is described as an important step in the production of quality wines. In fact, oak wood develops several aromatic nuances through its toasting which can be released into the wine. A great deal of work has been performed in order to identify the wood-derived volatile compounds that contribute to wine aroma (e.g., whisky-lactone, maltol, eugenol, guaiacol, vanillin).