terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

Abstract

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1]. Therefore, the aim of this work was to study the effect of polysaccharide extracts obtained from white grape must and pomace on the volatile composition of a sparkling white wine and to compare them with the use of commercial mannoproteins.

The Verdejo sparkling wines were elaborated by the traditional method and the different extracts were added in the tirage liquor. Five experiences were carried out: control wine and wines with the addition of four extracts from white must, white pomace, and two commercial products rich in yeast polysaccharides. The second fermentation was carried out in closed bottles in contact with lees and after 9 months, the sparkling wines were riddled and disgorged, and they were analyzed after 3 months. Minor volatile compounds were extracted by headspace solid-phase microextraction and quantified using a gas chromatograph coupled to a mass detector.

Statistically significant differences were found for most of the volatile compounds evaluated by treatment effect. The sparkling wines treated with polysaccharide extracts from wine by-products showed higher contents of ethyl esters of straight-chain fatty acids, ethyl esters of branched-chain fatty acids, alcohol acetates, terpenes and vanillin derivates than control wines. Therefore, these extracts can favor the maintenance of high content of volatile compounds associated with fruity and floral notes.

Acknowledgements: INIA, AEI and MICINN for the founding provided for this study through the projects RTA2017-00005-C02-01 and PID2021-123361OR-C21.

References:
1)  Canalejo D. et al. (2022) Characterization of polysaccharide extracts recovered from different grape and winemaking products. Food Res. Int., 157, 111480, DOI 10.1016/j.foodres.2022.111480

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Silvia Pérez-Magariño1*, Estela Cano-Mozo1, Marta Bueno-Herrera1, Belén Ayestarán2, Zenaida Guadalupe2

1Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain.
2ICVV-Universidad de La Rioja, Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain.

Contact the author*

Keywords

polysaccharide extracts, sparkling wine, volatile compounds, by-products

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Under-vine management effects on grapevine vegetative growth, gas exchange and rhizosphere microbial diversity

The use of cover crops under the vines might be an alternative to the use of herbicides or tillage, improving grapevine quality and soil characteristics. The aim of this research was to study the implications of different management strategies of the soil under the vines (herbicide, cultivation or cover crops) on grapevine growth, water and nutritional status, gas exchange parameters and belowground microbial communities.
The experimental design consisted in 4 treatments applied on 35L-potted Tempranillo vegetative grapevines with 10 replicates each grown in an open-top greenhouse in 2022 and 2023. Treatments included two cover crop species (Trifolium fragiferum and Bromus repens), herbicide (glyphosate al 36%) and an untreated control.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet.