terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

Abstract

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

Grapevine leaves, the most abundant waste product in the wine industry, can be used as a source of bioactive compounds and are present in the diets of several Mediterranean countries. In this work, we have shown the high potential of grapevine leaves for nutrition and as a source of bioactive compounds, which can be used for the pharmaceutical and cosmetic industries. We have selected seven different cultivars with high economic value and performed elemental, fatty acid (FA) and pigment profiling.

Total reflection X-ray fluorescence enabled the identification and quantification of 21 elements. Our results have shown that the ingestion of a small portion of grapevine leaves can provide World Health Organization’s daily recommended doses for several elements. We have also demonstrated that the most abundant FA in grapevine leaves are the health-promoting essential FAs: linoleic acid (omega-3) and linolenic acid (omega-6). Through pigment analysis, seventeen pigments were identified including chlorophylls, lutein, b-carotene and zeaxanthin, known for their antioxidant and anti-inflammatory properties.

Our results demonstrate that grapevine leaves have a high potential for human consumption as well as to be considered as sources of bioactive compounds and a thorough investigation on grapevine cultivars can reveal other applications besides wine.

Acknowledgements:

Work supported by Fundação para a Ciência e a Tecnologia (FCT-Portugal) through the Research Units BioISI (UID/MULTI/04046/2019), MARE (UIDB/04292/2020 and UIDP/04292/2020), ARNET – Aquatic Research Network Associated Laboratory (LA/P/0069/2020)) and PTDC/BIA-BQM/28539/2017 projects. FCT also funded the PhD grant (SFRH/BD/145298/2019) to GL and the research contracts (2022.07433.CEECIND) to MM and (2022.01746.CEECIND) to BD.

References:

1)  Maia M. et al. (2021) More than Just Wine: The Nutritional Benefits of Grapevine Leaves. Foods 10, 2251. DOI 10.3390/foods10102251

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marisa Maia1,2,3*, Ana Rita Cavaco1,2, Gonçalo Laureano1,2, Jorge Cunha4, José Eiras-Dias4, Ana Rita Matos2,3, Bernardo Duarte3,5, Andreia Figueiredo1,2,3

1Grapevine Pathogen Systems Lab., Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
2Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal;
3Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
4Instituto Nacional de Investigação Agrária e Veterinária I.P:, Polo de Inovação de Dois Portos, Quinta da Almoinha 2565-191Dois Portos, Portugal
5MARE – Marine and Environmental Sciences Centre & ARNET – Aquatic Research Network Associated Laboratory, Faculty of Sciences of the University of Lisbon, Campo Grande 1749-016 Lisbon, Portugal

Contact the author*

Keywords

fatty acid content, elemental profile, pigments, nutrition

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.