terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

Abstract

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

Grapevine leaves, the most abundant waste product in the wine industry, can be used as a source of bioactive compounds and are present in the diets of several Mediterranean countries. In this work, we have shown the high potential of grapevine leaves for nutrition and as a source of bioactive compounds, which can be used for the pharmaceutical and cosmetic industries. We have selected seven different cultivars with high economic value and performed elemental, fatty acid (FA) and pigment profiling.

Total reflection X-ray fluorescence enabled the identification and quantification of 21 elements. Our results have shown that the ingestion of a small portion of grapevine leaves can provide World Health Organization’s daily recommended doses for several elements. We have also demonstrated that the most abundant FA in grapevine leaves are the health-promoting essential FAs: linoleic acid (omega-3) and linolenic acid (omega-6). Through pigment analysis, seventeen pigments were identified including chlorophylls, lutein, b-carotene and zeaxanthin, known for their antioxidant and anti-inflammatory properties.

Our results demonstrate that grapevine leaves have a high potential for human consumption as well as to be considered as sources of bioactive compounds and a thorough investigation on grapevine cultivars can reveal other applications besides wine.

Acknowledgements:

Work supported by Fundação para a Ciência e a Tecnologia (FCT-Portugal) through the Research Units BioISI (UID/MULTI/04046/2019), MARE (UIDB/04292/2020 and UIDP/04292/2020), ARNET – Aquatic Research Network Associated Laboratory (LA/P/0069/2020)) and PTDC/BIA-BQM/28539/2017 projects. FCT also funded the PhD grant (SFRH/BD/145298/2019) to GL and the research contracts (2022.07433.CEECIND) to MM and (2022.01746.CEECIND) to BD.

References:

1)  Maia M. et al. (2021) More than Just Wine: The Nutritional Benefits of Grapevine Leaves. Foods 10, 2251. DOI 10.3390/foods10102251

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marisa Maia1,2,3*, Ana Rita Cavaco1,2, Gonçalo Laureano1,2, Jorge Cunha4, José Eiras-Dias4, Ana Rita Matos2,3, Bernardo Duarte3,5, Andreia Figueiredo1,2,3

1Grapevine Pathogen Systems Lab., Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
2Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal;
3Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
4Instituto Nacional de Investigação Agrária e Veterinária I.P:, Polo de Inovação de Dois Portos, Quinta da Almoinha 2565-191Dois Portos, Portugal
5MARE – Marine and Environmental Sciences Centre & ARNET – Aquatic Research Network Associated Laboratory, Faculty of Sciences of the University of Lisbon, Campo Grande 1749-016 Lisbon, Portugal

Contact the author*

Keywords

fatty acid content, elemental profile, pigments, nutrition

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...