terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

Abstract

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

Grapevine leaves, the most abundant waste product in the wine industry, can be used as a source of bioactive compounds and are present in the diets of several Mediterranean countries. In this work, we have shown the high potential of grapevine leaves for nutrition and as a source of bioactive compounds, which can be used for the pharmaceutical and cosmetic industries. We have selected seven different cultivars with high economic value and performed elemental, fatty acid (FA) and pigment profiling.

Total reflection X-ray fluorescence enabled the identification and quantification of 21 elements. Our results have shown that the ingestion of a small portion of grapevine leaves can provide World Health Organization’s daily recommended doses for several elements. We have also demonstrated that the most abundant FA in grapevine leaves are the health-promoting essential FAs: linoleic acid (omega-3) and linolenic acid (omega-6). Through pigment analysis, seventeen pigments were identified including chlorophylls, lutein, b-carotene and zeaxanthin, known for their antioxidant and anti-inflammatory properties.

Our results demonstrate that grapevine leaves have a high potential for human consumption as well as to be considered as sources of bioactive compounds and a thorough investigation on grapevine cultivars can reveal other applications besides wine.

Acknowledgements:

Work supported by Fundação para a Ciência e a Tecnologia (FCT-Portugal) through the Research Units BioISI (UID/MULTI/04046/2019), MARE (UIDB/04292/2020 and UIDP/04292/2020), ARNET – Aquatic Research Network Associated Laboratory (LA/P/0069/2020)) and PTDC/BIA-BQM/28539/2017 projects. FCT also funded the PhD grant (SFRH/BD/145298/2019) to GL and the research contracts (2022.07433.CEECIND) to MM and (2022.01746.CEECIND) to BD.

References:

1)  Maia M. et al. (2021) More than Just Wine: The Nutritional Benefits of Grapevine Leaves. Foods 10, 2251. DOI 10.3390/foods10102251

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Marisa Maia1,2,3*, Ana Rita Cavaco1,2, Gonçalo Laureano1,2, Jorge Cunha4, José Eiras-Dias4, Ana Rita Matos2,3, Bernardo Duarte3,5, Andreia Figueiredo1,2,3

1Grapevine Pathogen Systems Lab., Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
2Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal;
3Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
4Instituto Nacional de Investigação Agrária e Veterinária I.P:, Polo de Inovação de Dois Portos, Quinta da Almoinha 2565-191Dois Portos, Portugal
5MARE – Marine and Environmental Sciences Centre & ARNET – Aquatic Research Network Associated Laboratory, Faculty of Sciences of the University of Lisbon, Campo Grande 1749-016 Lisbon, Portugal

Contact the author*

Keywords

fatty acid content, elemental profile, pigments, nutrition

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

New varieties descendant from Monastrell with lower sugar and high phenolic content adapted to warm climates

Given that climate change is a continuous process, it is necessary to constantly search for new strategies that help the viticulturist sector to mitigate its consequences. All adaptation strategies will have a greater or lesser effect that in turn will be marked by the times of action. As a long-term action, a genetic breeding program to obtain new varieties descendant from Monastrell has been developed in the Region of Murcia (more specifically, in the IMIDA Research Center) since 1997. In this program, new red varieties have been developed through directed crosses of the Monastrell variety with other varieties such as Cabernet Sauvignon, Tempranillo and Syrah.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.