terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Preliminary study of the influence of ripening on the polysaccharide content of different red grape varieties

Abstract

Grape skin has a barrier and protective function in grapes. Cell wall of grape skins is mainly composed of polysaccharides such as pectins, celulloses and hemicelluloses and structural proteins. Terroir, variety and changes during ripening can affect the content of polysaccharides in grapes. The aim of this study was to evaluate the content of polysaccharides (PS) in grapes along the ripening process. Three red grape varieties were studied: Garnacha (G), Tempranillo (T) and Prieto Picudo (PP). The samples were collected in four different stages with one week between them. The PS extraction were carried out following the method developed by Canalejo et al.[1]. The total estimated PS of the extracts obtained were determined by HPSEC-RID and three different molecular weight fractions of PS were evaluated: high, medium and low molecular weight. Oenological parameters were analyzed in all samples. An ANOVA and correlation analysis were performed with Statgraphics Centurion XVIII and R Studio. The total PS increased during the ripening process, with the exception of PP that showed a decrease in total PS from 25 º Brix. The G grapes reached the highest PS content. Similar behavior was observed in the evolution of the percentage of high molecular weight PS (HMW PS), but the PP grapes presented the highest values. A positive correlation was found between the percentage of HMW PS and the Brix degree. These results suggest the influence of ripening on the HMW PS and open up future researches on other grape varieties.

Acknowledgements: The authors would like to thank the AEI and the MICINN for the funding provided for this study through the project PID2021-123361OR-C21 (with FEADER funds). M. C-F. also thanks the MICINN and AEI for funding her predoctoral contract (PRE2020-094464).

References:

1) Canalejo et al. (2021) Optimization of a method to extract polysaccharides from white grape pomace by-products. Food Chem. 365, 130445, DOI 10.1016/j.foodchem.2021.130445

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

María Curiel-Fernández1*, Zenaida Guadalupe2, Belén Ayestarán2, Silvia Pérez-Magariño1

1Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain.
2ICVV-Universidad de La Rioja, Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain.

Contact the author*

Keywords

polysaccharide, grape cell wall, grape skins, ripening

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.