terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Crown procyanidin quantification in red wines, rosé wines and Port wines

Crown procyanidin quantification in red wines, rosé wines and Port wines

Abstract

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1]. Moreover, this crown procyanidin tetramer has a very specific physicochemical characteristics and properties compared with non-cyclic condensed tannins [2]. Apart from the procyanidin tetramer, many other crown tannins have been detected by UPLC-UV-QTof, such as galloylated tetramers and pentamers. Moreover, recent study showed that these molecules are specifically located in grapes skin and their concentration in red wine depends of the grape varieties.

Thus following or previous work regarding the validation of a quantification method by UPLC-UV-QTof, the evolution kinetics of crown procyanidins family (tetramer, galloylated tetramer and pentamer) during wine aging in bottles over multiple vintages has been investigated. This evolution kinetic has been investigated in various wine matrices, such as red wine, rosé wine and port wine, in order to gain a better understanding of their evolution and impact in the various colloidal matrices. Moreover, this evolution kinetics has been compared with non-cyclic condensed tannins.

References:
1) Zeng, L.et al. (2019) Crown Procyanidin Tetramer: A Procyanidin with an Unusual Cyclic Skeleton with a Potent Protective Effect against Amyloid-β-Induced Toxicity. Molecules24: 1915, DOI 10.3390/molecules24101915

2) Jouin A et al. (2022) Evolution of the Crown Procyanidins’ Tetramer during Winemaking and Aging of Red Wine. Foods, 11: 3194. DOI10.3390/foods11203194

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Ferreira M. 1*., Teissedre PL.1, Jourdes M. 1

1 University Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, INRAE, UMR 1366, OENO, ISVV F33140 Villenave d’Ornon, France

Contact the author*

Keywords

wines, condensed tannins, crown tannins, UPLC-UV-QTof

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.