terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Crown procyanidin quantification in red wines, rosé wines and Port wines

Crown procyanidin quantification in red wines, rosé wines and Port wines

Abstract

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1]. Moreover, this crown procyanidin tetramer has a very specific physicochemical characteristics and properties compared with non-cyclic condensed tannins [2]. Apart from the procyanidin tetramer, many other crown tannins have been detected by UPLC-UV-QTof, such as galloylated tetramers and pentamers. Moreover, recent study showed that these molecules are specifically located in grapes skin and their concentration in red wine depends of the grape varieties.

Thus following or previous work regarding the validation of a quantification method by UPLC-UV-QTof, the evolution kinetics of crown procyanidins family (tetramer, galloylated tetramer and pentamer) during wine aging in bottles over multiple vintages has been investigated. This evolution kinetic has been investigated in various wine matrices, such as red wine, rosé wine and port wine, in order to gain a better understanding of their evolution and impact in the various colloidal matrices. Moreover, this evolution kinetics has been compared with non-cyclic condensed tannins.

References:
1) Zeng, L.et al. (2019) Crown Procyanidin Tetramer: A Procyanidin with an Unusual Cyclic Skeleton with a Potent Protective Effect against Amyloid-β-Induced Toxicity. Molecules24: 1915, DOI 10.3390/molecules24101915

2) Jouin A et al. (2022) Evolution of the Crown Procyanidins’ Tetramer during Winemaking and Aging of Red Wine. Foods, 11: 3194. DOI10.3390/foods11203194

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Ferreira M. 1*., Teissedre PL.1, Jourdes M. 1

1 University Bordeaux, Bordeaux INP, Bordeaux Sciences Agro, INRAE, UMR 1366, OENO, ISVV F33140 Villenave d’Ornon, France

Contact the author*

Keywords

wines, condensed tannins, crown tannins, UPLC-UV-QTof

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Optimization of the ripening time of new varieties descendants of Monastrell

Given the impact of climate change on viticulture in the Region of Murcia, this paper attempts to expose the possibility of using genetic improvement as a dilemma that allows access to new descendant varieties of the autochthonous variety Monastrell crossed with varieties such as Syrah and Cabernet. Sauvignon, thus obtaining hybrids (Gebas and Myrtia). In it, the chromatic parameters and the phenolic profile of the new varieties will be compared with those obtained by the Monastrell variety at two moments during maturation (12 and 14 º Baumé), to check if the results would allow earlier harvests in these new varieties thus avoiding the decoupling between phenolic and technological maturity, while improving the quality of grapes and wines.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.