terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Abstract

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families. Two Vitis vinifera extracts obtained from red grape skins (GG) and seeds (TS) were studied. Standards of malvidin, epicatechin and myricetin were also included in this study. The antimicrobial activities of the polyphenolic extracts and standards alone and in combination with the corresponding antibiotic of reference were evaluated against the six multidrug-resistant strains. Minimal inhibitory concentration (MIC) and fractional inhibitory concentration index (FIC) were determined. FIC values were interpreted as follows: synergy (FIC≤0.5); partial synergy (0.5<FIC<1); additive effect (FIC=1); indifference (1<FIC<2) and antagonism (FIC≥2).

The oenological extracts tested alone inhibited the growth of the six multidrug-resistant strains: GG (MIC=6.25 mg/mL) and TS (MIC≥1 mg/mL), and their effect was bacteriostatic. Combined with the corresponding antibiotic, GG showed a synergistic effect against all the E. coli and E. faecium strains (FICs=0.4-0.6), and it was able to reduce 3-8-fold the antibiotic MICs. Similarly, malvidin inhibited the growth of all the strains (MICs=0.67-1.34 mg/mL), it showed a synergistic effect in combination with the corresponding antibiotic against all the studied strains (FICs=0.6-0.9) and it was able to reduce 2-4-fold the antibiotic MICs. TS, epicatechin and myricetin were also able to inhibit the growth of all the strains (MICs=0.3-2.68 mg/mL) and their effect in combination with the corresponding antibiotic was either additive or indifferent (1£FICs<2).

Acknowledgements: ADER2019-I-IDD-00048 of the C.A.R./FEDER; AFIANZA 2022, PR-10-20 and PR-11-19 of the C.A.R.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Rocío Fernández-Pérez*, Carmen Tenorio Rodríguez and Fernanda Ruiz-Larrea
Universidad de La Rioja, ICVV (Instituto de Ciencias de la Vid y del Vino: CSIC, Universidad de La Rioja, Gobierno de La Rioja), Av. Madre de Dios 53, 26006 Logroño, Spain

Contact the author*

Keywords

antibiotic resistance, MIC, FIC, synergy, polyphenols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.