terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Abstract

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families. Two Vitis vinifera extracts obtained from red grape skins (GG) and seeds (TS) were studied. Standards of malvidin, epicatechin and myricetin were also included in this study. The antimicrobial activities of the polyphenolic extracts and standards alone and in combination with the corresponding antibiotic of reference were evaluated against the six multidrug-resistant strains. Minimal inhibitory concentration (MIC) and fractional inhibitory concentration index (FIC) were determined. FIC values were interpreted as follows: synergy (FIC≤0.5); partial synergy (0.5<FIC<1); additive effect (FIC=1); indifference (1<FIC<2) and antagonism (FIC≥2).

The oenological extracts tested alone inhibited the growth of the six multidrug-resistant strains: GG (MIC=6.25 mg/mL) and TS (MIC≥1 mg/mL), and their effect was bacteriostatic. Combined with the corresponding antibiotic, GG showed a synergistic effect against all the E. coli and E. faecium strains (FICs=0.4-0.6), and it was able to reduce 3-8-fold the antibiotic MICs. Similarly, malvidin inhibited the growth of all the strains (MICs=0.67-1.34 mg/mL), it showed a synergistic effect in combination with the corresponding antibiotic against all the studied strains (FICs=0.6-0.9) and it was able to reduce 2-4-fold the antibiotic MICs. TS, epicatechin and myricetin were also able to inhibit the growth of all the strains (MICs=0.3-2.68 mg/mL) and their effect in combination with the corresponding antibiotic was either additive or indifferent (1£FICs<2).

Acknowledgements: ADER2019-I-IDD-00048 of the C.A.R./FEDER; AFIANZA 2022, PR-10-20 and PR-11-19 of the C.A.R.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Rocío Fernández-Pérez*, Carmen Tenorio Rodríguez and Fernanda Ruiz-Larrea
Universidad de La Rioja, ICVV (Instituto de Ciencias de la Vid y del Vino: CSIC, Universidad de La Rioja, Gobierno de La Rioja), Av. Madre de Dios 53, 26006 Logroño, Spain

Contact the author*

Keywords

antibiotic resistance, MIC, FIC, synergy, polyphenols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.