terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Abstract

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families. Two Vitis vinifera extracts obtained from red grape skins (GG) and seeds (TS) were studied. Standards of malvidin, epicatechin and myricetin were also included in this study. The antimicrobial activities of the polyphenolic extracts and standards alone and in combination with the corresponding antibiotic of reference were evaluated against the six multidrug-resistant strains. Minimal inhibitory concentration (MIC) and fractional inhibitory concentration index (FIC) were determined. FIC values were interpreted as follows: synergy (FIC≤0.5); partial synergy (0.5<FIC<1); additive effect (FIC=1); indifference (1<FIC<2) and antagonism (FIC≥2).

The oenological extracts tested alone inhibited the growth of the six multidrug-resistant strains: GG (MIC=6.25 mg/mL) and TS (MIC≥1 mg/mL), and their effect was bacteriostatic. Combined with the corresponding antibiotic, GG showed a synergistic effect against all the E. coli and E. faecium strains (FICs=0.4-0.6), and it was able to reduce 3-8-fold the antibiotic MICs. Similarly, malvidin inhibited the growth of all the strains (MICs=0.67-1.34 mg/mL), it showed a synergistic effect in combination with the corresponding antibiotic against all the studied strains (FICs=0.6-0.9) and it was able to reduce 2-4-fold the antibiotic MICs. TS, epicatechin and myricetin were also able to inhibit the growth of all the strains (MICs=0.3-2.68 mg/mL) and their effect in combination with the corresponding antibiotic was either additive or indifferent (1£FICs<2).

Acknowledgements: ADER2019-I-IDD-00048 of the C.A.R./FEDER; AFIANZA 2022, PR-10-20 and PR-11-19 of the C.A.R.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Rocío Fernández-Pérez*, Carmen Tenorio Rodríguez and Fernanda Ruiz-Larrea
Universidad de La Rioja, ICVV (Instituto de Ciencias de la Vid y del Vino: CSIC, Universidad de La Rioja, Gobierno de La Rioja), Av. Madre de Dios 53, 26006 Logroño, Spain

Contact the author*

Keywords

antibiotic resistance, MIC, FIC, synergy, polyphenols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.

Genetic identification of 200-year-old Serbian grapevine herbarium

Botanist Andreas Raphael Wolny collected a grapevine herbarium from 1812-1824 in Sremski Karlovci (wine region of Vojvodina, Serbia), which represents local cultivated grapevine diversity before the introduction of grape phylloxera in the region. The herbarium comprises over 100 samples organized into two subcollections based on berry colour (red and white varieties), totaling 47 different grape varieties. The objective of this study was to investigate the historical varietal assortment of Balkan and Pannonian winegrowing areas with long viticulture traditions.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison. In all solutions were added 1ml/l of Tween 80 ® surfactant.

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].