terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Antimicrobial activity of oenological polyphenols against Gram positive and Gram negative intestinal multidrug-resistant bacteria

Abstract

Bacterial antibiotic resistance is a major current health problem. Polyphenols have demonstrated antibacterial activity, and in this work we studied the effect of oenological polyphenols on the growth of intestinal multidrug-resistant strains of human and animal origin. Two Enterococcus faecium strains, resistant to vancomycin and other antibiotics, and four Escherichia coli strains, resistant to ampicillin and other antibiotics, were included in this study. All strains showed multidrug resistant phenotypes and genotypes to at least two antibiotic families. Two Vitis vinifera extracts obtained from red grape skins (GG) and seeds (TS) were studied. Standards of malvidin, epicatechin and myricetin were also included in this study. The antimicrobial activities of the polyphenolic extracts and standards alone and in combination with the corresponding antibiotic of reference were evaluated against the six multidrug-resistant strains. Minimal inhibitory concentration (MIC) and fractional inhibitory concentration index (FIC) were determined. FIC values were interpreted as follows: synergy (FIC≤0.5); partial synergy (0.5<FIC<1); additive effect (FIC=1); indifference (1<FIC<2) and antagonism (FIC≥2).

The oenological extracts tested alone inhibited the growth of the six multidrug-resistant strains: GG (MIC=6.25 mg/mL) and TS (MIC≥1 mg/mL), and their effect was bacteriostatic. Combined with the corresponding antibiotic, GG showed a synergistic effect against all the E. coli and E. faecium strains (FICs=0.4-0.6), and it was able to reduce 3-8-fold the antibiotic MICs. Similarly, malvidin inhibited the growth of all the strains (MICs=0.67-1.34 mg/mL), it showed a synergistic effect in combination with the corresponding antibiotic against all the studied strains (FICs=0.6-0.9) and it was able to reduce 2-4-fold the antibiotic MICs. TS, epicatechin and myricetin were also able to inhibit the growth of all the strains (MICs=0.3-2.68 mg/mL) and their effect in combination with the corresponding antibiotic was either additive or indifferent (1£FICs<2).

Acknowledgements: ADER2019-I-IDD-00048 of the C.A.R./FEDER; AFIANZA 2022, PR-10-20 and PR-11-19 of the C.A.R.

DOI:

Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Rocío Fernández-Pérez*, Carmen Tenorio Rodríguez and Fernanda Ruiz-Larrea
Universidad de La Rioja, ICVV (Instituto de Ciencias de la Vid y del Vino: CSIC, Universidad de La Rioja, Gobierno de La Rioja), Av. Madre de Dios 53, 26006 Logroño, Spain

Contact the author*

Keywords

antibiotic resistance, MIC, FIC, synergy, polyphenols

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.