GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 «Nektar» -the new red variety wine grape aromatic high quality

«Nektar» -the new red variety wine grape aromatic high quality

Abstract

Context and purpose of the study – The multi-annual study of the International Genetic Bank of the Grape Vine has shown that red varieties are enough, but the red varieties that produce high-quality red wine are minimal. This paper presents is the create, the study and amplographic description the new red variety “Nektar”. The new red variety “Nektar” was created at the Athens Vineyard Institute in 2012.  

Material and methods – The variety created by crossing by the method of hybridization of the newly Greek variety “Makedonas” (“Ksinomauro” x “Cabernet Sauvignon”) with the newly Greek variety “Tihi” (“Augoulato” with the pollen mix of varieties Cabernet-Sauvignon and Grenache noir).

Results – The “Nektar” is is a new red grape variety wine-making quality aromatic. The duration of the variety from budburst to maturity is 136-145 days. The variety is very strong with large shoots growth (2.1 – 3.0 m). The growth of shoots is higherover 95 %. The average mass of cluster is 360 g and the yield are high, 15-20 t / ha. The “Nektar” grape variety is medium, spheric,middle density, the diameter 15 mm, with anaverage weight of 1,9 g and a blue-black color.The flower is hermaphrodite. The pollen is fertile.The quantity of seeds in berry is3-4. The skin is thick with high strength. The flesh isnone or very weak, with a special flavor of the variety, green paper. The content of sugar in must is greater than 24 %. The “Nektar” variety, based on its ampelographic and natural characteristics, is classified in the group of varieties convarietasponticaNeqr. It is distinguishedfrom by its high resistance to drought and fungal diseases compared to other varieties of Vitis vinifera L. The variety is intended for the production of high-quality red wines, and very aromatic juices. Can be used in the genetic improvement of vitis vinifera varieties as a qualitydonor

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

P. Zamanidis1, Ch. Paschalidis2, L. Papakonstantinou3, D. Taskos1 and E. Vavoulidou4

(1) Department of Viticulture of Athens. Institute of Olive Tree, Subtropical Cropsand Viticulture. Hellenic Agricultural Organization-DEMETER 1 S. Venizelou Str., 14123, Lykovrisi, Attiki, Greece.
(2) Technological Educational Institute of Peloponnese, School of Agricultural Technology, 24100 Antimalamos, Kalamata
(3) Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica
(4) “ELGO DIMITRA” Athens Soil Science Institute. 1 Venizelou St., 14123 Lykovrysi, Attica

Contact the author

Keywords

Hybridization, variety, shoots, leaves, inflorescence, cluster, berry 

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Bioprotection en phase pré-fermentaire, synthèse de 3 ans d’expérimentations dans différentes régions viticoles

With growing consumer interest in products without chemical additives, limiting the use of sulfites is a priority for the wine industry. Bioprotection is a biological alternative that avoids or reduces the risks of alterations that have a negative impact on the organoleptic quality of wines and, ultimately, on their acceptability to consumers. bioprotection can also provide a response to the risks of microbiological deviations, which are increased both by climate change and by the organization of harvesting operations, which increasingly include the use of multi-bins filled at the vine, exposing the harvest to sometimes high temperatures for longer periods of time.

Evaluation of viticultural measures to delay ripening of Vitis vinifera ‘Grüner Veltliner’

Context and purpose of the study. `Grüner Veltliner´ is the most important Austrian white quality wine variety, which is mainly used to produce primary fruity wines.

Carbon sequestration in vineyard soils: biomass utilization in a climate change scenario–the SUSTAIN project

The SUSTAIN project aims at assessing the soil organic carbon (SOC) stock and vulnerability in vineyard soils under a climate change scenario.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

The regulation of ABA-induced anthocyanin accumulation in grape berry

Color is a key quality trait for grape berry and the producing wines. Berry color of red genotypes is mainly determined by the quantity and composition of anthocyanins accumulated in the skin and/or pulp. Both genetic and environmental factors could influence the quantity and composition of anthocyanins, while the underlying mechanisms are not fully clear. To explore the mechanisms underlying the diversity of anthocyanin accumulation in grape berry, we compared two grapevine genotypes showing distinct sensitivities to ABA-induced anthocyanin biosynthesis, where one genotype showed minor responses to exogenous ABA application while the other showed significant increase in anthocyanins after exogenous ABA application.