GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 «Nektar» -the new red variety wine grape aromatic high quality

«Nektar» -the new red variety wine grape aromatic high quality

Abstract

Context and purpose of the study – The multi-annual study of the International Genetic Bank of the Grape Vine has shown that red varieties are enough, but the red varieties that produce high-quality red wine are minimal. This paper presents is the create, the study and amplographic description the new red variety “Nektar”. The new red variety “Nektar” was created at the Athens Vineyard Institute in 2012.  

Material and methods – The variety created by crossing by the method of hybridization of the newly Greek variety “Makedonas” (“Ksinomauro” x “Cabernet Sauvignon”) with the newly Greek variety “Tihi” (“Augoulato” with the pollen mix of varieties Cabernet-Sauvignon and Grenache noir).

Results – The “Nektar” is is a new red grape variety wine-making quality aromatic. The duration of the variety from budburst to maturity is 136-145 days. The variety is very strong with large shoots growth (2.1 – 3.0 m). The growth of shoots is higherover 95 %. The average mass of cluster is 360 g and the yield are high, 15-20 t / ha. The “Nektar” grape variety is medium, spheric,middle density, the diameter 15 mm, with anaverage weight of 1,9 g and a blue-black color.The flower is hermaphrodite. The pollen is fertile.The quantity of seeds in berry is3-4. The skin is thick with high strength. The flesh isnone or very weak, with a special flavor of the variety, green paper. The content of sugar in must is greater than 24 %. The “Nektar” variety, based on its ampelographic and natural characteristics, is classified in the group of varieties convarietasponticaNeqr. It is distinguishedfrom by its high resistance to drought and fungal diseases compared to other varieties of Vitis vinifera L. The variety is intended for the production of high-quality red wines, and very aromatic juices. Can be used in the genetic improvement of vitis vinifera varieties as a qualitydonor

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

P. Zamanidis1, Ch. Paschalidis2, L. Papakonstantinou3, D. Taskos1 and E. Vavoulidou4

(1) Department of Viticulture of Athens. Institute of Olive Tree, Subtropical Cropsand Viticulture. Hellenic Agricultural Organization-DEMETER 1 S. Venizelou Str., 14123, Lykovrisi, Attiki, Greece.
(2) Technological Educational Institute of Peloponnese, School of Agricultural Technology, 24100 Antimalamos, Kalamata
(3) Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica
(4) “ELGO DIMITRA” Athens Soil Science Institute. 1 Venizelou St., 14123 Lykovrysi, Attica

Contact the author

Keywords

Hybridization, variety, shoots, leaves, inflorescence, cluster, berry 

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Climate change imposes increasing restrictions and risks to Mediterranean viticulture. Extreme heat and drought stress events are becoming more frequent which puts in risk sustainability of Mediterranean viticulture. Moreover row crops e.g. grapevine for wine, are increasingly prone to the impact of more intense/longer exposure time to heat stress. The amplified effects of soil surface energy reflectance and conductance on soil-atmosphere heat fluxes can be harmful for leaf and berry physiology.

The impact of grazing by cattle on Vitis vinifera L. cv. Shiraz vegetative growth and metabolite profile

Context and purpose of the study. Globally, vineyard cultivation uses conventional methods to manage pests, diseases and increase yield.

Research on the origin and the side effects of chitosan stabilizing properties in wine

Fungal chitosan is a polysaccharide made up of glucosamine and N-acetyl-glucosamine and derived from chitin-glucan of Aspergillus niger or Agaricus bisporus. Fungal chitosan has been authorized as an antiseptic agent in wine since 2009 (OIV) and in organic wine in 2018. At the maximum dose of 10g/hl, it was shown to eliminate Brettanomyces bruxellensis, the main spoilage agent in red wines. Fungal chitosan is highly renewable, biocompatible (ADI equivalent to sucrose) and non-allergenic. However, winemakers often prefer to use sulfites (SO2), though sulfites are classified as priority food allergens, than chitosan. Indeed, many conflicting reports exist regarding its efficiency and its side effects towards beneficial wine microorganisms or wine taste. These contradictions could be explained by the heterogeneity of the fungal chitosan lots traded, the diversity of the wines (chemical composition, winemaking process), but also, by the recently highlighted huge genetic diversity prevailing in wine microbial species.