GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Crop load management of newly planted Pinot gris grown in warm climate of California

Crop load management of newly planted Pinot gris grown in warm climate of California

Abstract

Context and purpose of the study – San Joaquin Valley accounts for 68% of Pinot gris acreage and produces 83% of Pinot gris wine in California. Strong demand for Pinot gris has prompted growers to restrict the nonbearing period to less than two years, if possible. This requires permanent vine structure establishment the first year with a crop expected in the second year. Precocious cropping raises the risk of overcropping with possible carry-over effects in subsequent years. To identify the optimum crop level and economic threshold for newly planted Pinot gris vines, a field trial was initiated in a commercial vineyard in 2016.  

Materials and methods – Bench grafted Pinot gris vines with Freedom rootstocks were planted in February of 2015. Quadrilateral cordons were established in the same year aiming for the first crop in 2016. Randomized complete block design was set up with four levels of inflorescence thinning in the spring of 2016, and each treatment was replicated in 5 times. Inflorescences were hand thinned approximately 3 weeks pre-bloom. No thinning was applied after 2016, but data were still collected to study the potential carry-over effect in 2017 and 2018. Four treatments included: 1) all fruit removed (0 cluster per shoot); 2) one cluster per two shoots; 3) one cluster per shoot; 4) no fruit removed. Five vines in each block were labeled as data vines and yield components, pruning weight and fruit chemistry were collected in 2016, 2017 and 2018.  

Results – inflorescence removal increased fruit set, average berry weight, and soluble solids in 2016. Increased cluster compaction on thinned vines did not cause excessive bunch rot, but did partially compensate for the potential yield loss associated with inflorescence removal. Yield in 2016 was reduced by 6%, 28% and 100% with the severity of inflorescence removal. No thinning was performed in 2017 and 2018, but yield, fruit chemistry, and pruning weight were still measured. The Ravaz Index (RI) from treatment of one inflorescence per two shoots was 8.3 in 2016 and vines in that treatment had the highest accumulated yield across 2016 and 2017. Vines with RI > 12 showed significant delayed sugar accumulation in 2016 and reduced yields in 2017. Thus, newly planted vines with an RI> 12 in their first crop year were overcropped and will likely see reduced yields the following year, whereas vines with RI of approximate 10 provide maximum yield without affecting fruit chemistry and the following year’s crop. In 2018, yield and fruit chemistry were monitored as well, however no difference has been found across various treatments. 

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Shijian ZHUANG1, Kaan KURTURAL2, Matthew FIDELIBUS2

(1) University of California Cooperative Extension, Fresno County
(2) Department of Viticulture and Enology, University of California at Davis

Contact the author

Keywords

Pinot gris, Crop load, Carry-over, Newly planted vine

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

“Silex vitioeno module porte-greffe”: an information system to gather experimental results on grapevine rootstocks

Maintaining stable yields and quality over time is a major challenge for the wine industry. Within the context of climate change, the choice of the rootstock is an important lever for adapting to current and future climatic conditions. Within a vineyard, the choice of the rootstock depends on the environmental conditions, the scion variety and the objectives of production. Many experimental data on the performances of rootstock already exist and can guide our decision-making.

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are
important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate. While the synergistic effect of light and temperature has been intensively examined on flavonoids in relation to bunch exposure, studies targeting the sole effect of high temperature have mostly
focused on anthocyanins during the ripening period. With tannin biosynthesis starting around flowering, heatwaves occurring earlier in the grape growing season could be critical. Only a few papers report the impact of temperature on tannin synthesis and accumulation; to date, none have examined the effect of high temperature extremes which, in the context of climate change, relates to increases in heatwave intensity.

Evaluation of the effect of regulated deficit irrigation on Vitis vinifera Cabernet-Sauvignon physiological traits and final fruit composition

Climate change establishes challenges, as well as opportunities for many sectors, and markedly the wine sector.

The effects of reducing herbicides in New Zealand vineyards

Herbicides are commonly sprayed in the vine row to prevent competition with vines for water and minerals and to keep weeds from growing into the bunch zone. Sprays are applied before budbreak and reapplied multiple times during the season to keep the undervine bare. There is growing concern about the negative effects of herbicides on humans and the environment, and weeds in New Zealand have developed resistance to herbicides. Therefore, it is imperative that we reduce our reliance on herbicides in viticulture and incorporate methods that do not engender resistance.

Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Climate change imposes increasing restrictions and risks to Mediterranean viticulture. Extreme heat and drought stress events are becoming more frequent which puts in risk sustainability of Mediterranean viticulture. Moreover row crops e.g. grapevine for wine, are increasingly prone to the impact of more intense/longer exposure time to heat stress. The amplified effects of soil surface energy reflectance and conductance on soil-atmosphere heat fluxes can be harmful for leaf and berry physiology.