GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Crop load management of newly planted Pinot gris grown in warm climate of California

Crop load management of newly planted Pinot gris grown in warm climate of California

Abstract

Context and purpose of the study – San Joaquin Valley accounts for 68% of Pinot gris acreage and produces 83% of Pinot gris wine in California. Strong demand for Pinot gris has prompted growers to restrict the nonbearing period to less than two years, if possible. This requires permanent vine structure establishment the first year with a crop expected in the second year. Precocious cropping raises the risk of overcropping with possible carry-over effects in subsequent years. To identify the optimum crop level and economic threshold for newly planted Pinot gris vines, a field trial was initiated in a commercial vineyard in 2016.  

Materials and methods – Bench grafted Pinot gris vines with Freedom rootstocks were planted in February of 2015. Quadrilateral cordons were established in the same year aiming for the first crop in 2016. Randomized complete block design was set up with four levels of inflorescence thinning in the spring of 2016, and each treatment was replicated in 5 times. Inflorescences were hand thinned approximately 3 weeks pre-bloom. No thinning was applied after 2016, but data were still collected to study the potential carry-over effect in 2017 and 2018. Four treatments included: 1) all fruit removed (0 cluster per shoot); 2) one cluster per two shoots; 3) one cluster per shoot; 4) no fruit removed. Five vines in each block were labeled as data vines and yield components, pruning weight and fruit chemistry were collected in 2016, 2017 and 2018.  

Results – inflorescence removal increased fruit set, average berry weight, and soluble solids in 2016. Increased cluster compaction on thinned vines did not cause excessive bunch rot, but did partially compensate for the potential yield loss associated with inflorescence removal. Yield in 2016 was reduced by 6%, 28% and 100% with the severity of inflorescence removal. No thinning was performed in 2017 and 2018, but yield, fruit chemistry, and pruning weight were still measured. The Ravaz Index (RI) from treatment of one inflorescence per two shoots was 8.3 in 2016 and vines in that treatment had the highest accumulated yield across 2016 and 2017. Vines with RI > 12 showed significant delayed sugar accumulation in 2016 and reduced yields in 2017. Thus, newly planted vines with an RI> 12 in their first crop year were overcropped and will likely see reduced yields the following year, whereas vines with RI of approximate 10 provide maximum yield without affecting fruit chemistry and the following year’s crop. In 2018, yield and fruit chemistry were monitored as well, however no difference has been found across various treatments. 

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Shijian ZHUANG1, Kaan KURTURAL2, Matthew FIDELIBUS2

(1) University of California Cooperative Extension, Fresno County
(2) Department of Viticulture and Enology, University of California at Davis

Contact the author

Keywords

Pinot gris, Crop load, Carry-over, Newly planted vine

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate.

Digitising the vineyard: developing new technologies for viticulture in Australia 

New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season.

How to develop strategies of adaptation to climate change based on a foresight exercise?

Prospective studies raise a real intellectual interest for those who contribute to them or take cognizance of it. But they are often considered too difficult to operationalize

Sustaining grape production under challenging climate change circumstances

Grapevines are an important economic crop grown in temperate climates of both hemispheres characterized by short‐term heat spells and heat waves