GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Crop load management of newly planted Pinot gris grown in warm climate of California

Crop load management of newly planted Pinot gris grown in warm climate of California

Abstract

Context and purpose of the study – San Joaquin Valley accounts for 68% of Pinot gris acreage and produces 83% of Pinot gris wine in California. Strong demand for Pinot gris has prompted growers to restrict the nonbearing period to less than two years, if possible. This requires permanent vine structure establishment the first year with a crop expected in the second year. Precocious cropping raises the risk of overcropping with possible carry-over effects in subsequent years. To identify the optimum crop level and economic threshold for newly planted Pinot gris vines, a field trial was initiated in a commercial vineyard in 2016.  

Materials and methods – Bench grafted Pinot gris vines with Freedom rootstocks were planted in February of 2015. Quadrilateral cordons were established in the same year aiming for the first crop in 2016. Randomized complete block design was set up with four levels of inflorescence thinning in the spring of 2016, and each treatment was replicated in 5 times. Inflorescences were hand thinned approximately 3 weeks pre-bloom. No thinning was applied after 2016, but data were still collected to study the potential carry-over effect in 2017 and 2018. Four treatments included: 1) all fruit removed (0 cluster per shoot); 2) one cluster per two shoots; 3) one cluster per shoot; 4) no fruit removed. Five vines in each block were labeled as data vines and yield components, pruning weight and fruit chemistry were collected in 2016, 2017 and 2018.  

Results – inflorescence removal increased fruit set, average berry weight, and soluble solids in 2016. Increased cluster compaction on thinned vines did not cause excessive bunch rot, but did partially compensate for the potential yield loss associated with inflorescence removal. Yield in 2016 was reduced by 6%, 28% and 100% with the severity of inflorescence removal. No thinning was performed in 2017 and 2018, but yield, fruit chemistry, and pruning weight were still measured. The Ravaz Index (RI) from treatment of one inflorescence per two shoots was 8.3 in 2016 and vines in that treatment had the highest accumulated yield across 2016 and 2017. Vines with RI > 12 showed significant delayed sugar accumulation in 2016 and reduced yields in 2017. Thus, newly planted vines with an RI> 12 in their first crop year were overcropped and will likely see reduced yields the following year, whereas vines with RI of approximate 10 provide maximum yield without affecting fruit chemistry and the following year’s crop. In 2018, yield and fruit chemistry were monitored as well, however no difference has been found across various treatments. 

DOI:

Publication date: June 18, 2020

Issue: GiESCO 2019

Type: Poster

Authors

Shijian ZHUANG1, Kaan KURTURAL2, Matthew FIDELIBUS2

(1) University of California Cooperative Extension, Fresno County
(2) Department of Viticulture and Enology, University of California at Davis

Contact the author

Keywords

Pinot gris, Crop load, Carry-over, Newly planted vine

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Geospatial technologies in spatially defined viticulture: case study of a vineyard with Agiorgitiko variety in Koutsi, Nemea, Greece

Geospatial technologies have significant contribution to viticulture, especially in small-scale vineyards, which require precise management. Geospatial data collected by modern technologies, such as Unmanned Aerial Vehicle (UAV) and satellite imagery, can be processed by modern software and easily be stored and transferred to GIS environments, highlighting important information about the health of vine plants, the yield of grapes and the wine, especially in wine-making varieties. The identification of field variability is very important, particularly for the production of high quality wine. Modern geospatial data management technologies are used to achieve an easy and effortless localization of the fields’ variability.

ePROSECCO: Historical, cultural, applied philosophy analysis and process, product and certification innovation, for the “sustainable original progress and promotion 4.1c” of a historic and famous territory and wine

According to the algorithm “A step back towards the future 4.1C”, (Cargnello,1986a, 1987d, 1988a.b, 1991, 1993, 1994b, 1995, 1999a.e, 2000b, 2007c, 2008a, 2009d, 2013; and according to the principles of “Charter of Sustainable Viticulture BIO‐MetaEthics 4.1CC” of GiESCO (Carbonneau and Cargnello, 2003 2015, 2017), the historical, applied philosophy and productive analysis connected to the innovations and to the “Certification of the Universal Holistic MetaEthical Sustainability 4.1C” “indexed new global production model 4.1C” has always been fundamental, especially for the “Prosecco Territory” and for the “Prosecco Wine” to design and implement their synergistic future “Sustainable and Certificable 4.1CC” according to the principles of the “Charter of Sustainable Viticulture BIO‐MetaEthics 4.1CC” by the GiESCO (Carbonneau and Cargnello, lc, Cargnello et Carbonneau, 2007, 2018), and of the Conegliano Campus 5.1C. (Cargnello, lc). Nowadays, people think that Prosecco is a wine from the Veneto Region (from Conegliano and Valdobbiadene in particular), while it comes from Friuli‐Venezia Giulia Region (in North Eastern Italy, such as Veneto) more precisely from “Prosecco” in the Municipality of Trieste (TS‐Italy), as documented in 1382 and in 1548, when Pier Andrea Mattioli, described “that ancient wine, which is born in Prosecco”, as a wine with the following characteristics “thin, clear, shiny, golden, odorous and pleasant to taste». In 1888 at the “Wine Fair” of Trieste there were the “Sparkling wine Prosecco” by Giovanni Balanc, by Giuseppe Klampferer and that one by Marino Luxa. In the 19th century, many expressed their appreciation for the “Prosecco” of Trieste. In order to implement intra and extra territorial and cross‐border relations, as well as, the “Certification of: Products, Companies, Territory, Bio‐MétaÉthique District 4.1C” of Prosecco, a series of activities and researches were conducted in 8 companies: 5 in the “Territory of Prosecco” (TS) in which the principles of “Charter of Sustainable Viticulture BIO‐MetaEthics 4.1CC” of GiESCO (Carbonneau and Cargnello, lc) have been successfully applied. In particolar: 1‐ new and original “Sustainable 4.1C global production model” developed also to prevent the problems caused by wild boar, roe deer, and birds while safeguarding their “psychophysical wellness”, as well as the “psychophysical wellness 4.1C” of the macro and micro flora and fauna, of the biodiversity, of the landscape, etc. (Cargnello, lc), 1.2‐ chemical weed control and “Non MetaEthics 4.1C” processing with the total grass growing of the ground without or with mowing, better if it is manual to protect grass, air and soil, 2‐ recovery of “Historic”: land, vineyards, vines, biodiversity, landscapes, productions, products, … , 3‐ production of the famous “Prosekar, also rosé, of Prosecco” and “Prosecco di Prosecco”, according to “A step back towards the future 4.1C” 4‐ to offer a deserved psychophysical well‐being to the “Prosecco Territory” and entrepreneurs. 

Exploring the plasticity of the grapevine drought physiology

Grapevine response to water deficit has been extensively studied. Nevertheless, debate still exists regarding some physiology adoption under drought

The impact of decadal cold waves over Europe on future viticultural practices

A crucial issue associated with the long-term impact of climate change in viticulture concerns the capacity of resilience of the typical varieties currently cultivated in traditional areas. Indeed, regions that are currently characterized by optimal climatic conditions can cease to be so in the future. At the same time, new premium wine production regions may arise north of 50oN. Both these threats and opportunities are based on the assessment of a very likely gradual temperature increase along the 21st century, resulting from the ensemble mean of the state-of-the-art climate projections. Such an assessment is orienting decision-makers and stakeholders to rethink the grapevine cultivation zoning, prefiguring, for each variety, a shift at higher latitudes and/or at higher altitudes areas.

Soil preparation practices to eliminate soil restrictions to grapevine root distribution for the establishment of sustainable vineyards

Grapevine yield and wine quality are dependent on good quality vegetative growth and root development. Soils that restrict proper grapevine root development, together with the high cost of establishing a new vineyard, require effective soil preparation to sustain productive vineyards for 25 years. This study reviews soil preparation research conducted over the past 50 years and identifies best practices to remove soil physical and chemical impediments to create optimum conditions for root growth.