GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

Abstract

Introduction -The increasing frequency of extreme weather events (EWE) represents a severe threat to viticulture. The accurate and early assessment of plant stress condition offers substantial advantages to minimize the effects of EWE. Vegetation indices obtained by remote sensing could provide useful information for early detection and quantification of abiotic stresses.

Methods ‐ The analysis assessed several vineyards in Italy and Australia recently affected by EWE (2016‐ 18). The spatio‐temporal pattern of EWE (heatwaves, late frost) and their effects on vineyards were assessed by analysing the evolution of specific vegetation indices calculated using satellite imagery. The magnitude of indices variations was used to quantify the extent of canopy damage. Temporal variations were used to calculate the time necessary for complete recovery of the plants.
Results ‐ Different spectral bands (NIR, red edge, SWIR, green and red) and several vegetation indices provided information to quantify the extension of the areas damaged by EWE. The comparison of the indices values and single bands in affected and unaffected areas allowed the estimation of the temporal pattern in different climate conditions of the studied areas. Specifically, it was possible to quantify the recovery time, needed by plants to return to an acceptable vigour after damages induced by frost. The results provided a basis for better understanding and management of EWE effects.

Discussion ‐ The implementation of remote sensing techniques is widely used to monitor water status and spatial variability of the vineyards. By contrast, there is less application of these tools for monitoring effects and damages due to EWE. The results of this study demonstrate that the analysis of vegetation indices computed from remote sensing imagery can provide factual information of the spatio‐temporal pattern of vineyards affected by EWE. The methodology established could be used to support decision‐ making towards calamity alleviation, insurance services and recovery managemen

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Alessia COGATO1, Massimiliano DE ANTONI MIGLIORATI2, Vinay PAGAY3, Francesco MARINELLO1, Franco MEGGIO4, Peter GRACE2

(1) University of Padova, TESAF, Viale dell’Università 16, 35020 Padova, Italy
(2)Queensland University of Technology QUT,2 George St, Brisbane City QLD 4000, Australia
(3)The University of Adelaide, Adelaide, South Australia 5005, Australia
(4) University of Padova, DAFNAE, Viale dell’Università 16, 35020 Padova, Italy

Contact the author

Keywords

Grapevine,Extreme weather events, Climate change, Remote sensing, Spatio‐temporal pattern

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Phenological stage dependency of Cabernet Sauvignon and Grenache response to water and nutrient limitation 

As the frequency and intensity of drought events increase, understanding the mechanisms of plant resilience to water deficit is crucial. To maintain an appropriate plant yield, a common practice is the application of high amounts of fertilizers with negative environmental impacts. The single and combined effect of water deficit and nutrient availability, namely nitrogen (N) and potassium (K), in Vitis Vinifera L. cv. Cabernet Sauvignon and Grenache was evaluated. Two-year-old grapevine plants grafted on SO4 rootstock were transferred in pots under semi-environmental conditions. During the growing season, plants were either maintained well-watered (100% ETc) or subjected to a controlled water deficit irrigation (33% ETc).

A zoning study of the viticultural territory of a cooperative winery in Valpolicella

The Valpolicella hilly area, north of Verona, is highly vocated for viticulture but its vineyards are sometimes characterized by very different soil and microclimate conditions which can greatly affect their oenological potential.

ABA and ethephon alleviated to a different extent the impact of elevated temperatures on grape berry composition

The Intergovernmental Panel on Climate Change (IPCC) forecasts an increase in global temperature and a decrease in relative humidity (RH) in the coming decades, which may have implications for berry ripening and composition.

Study of the sensory dimension of the wine typicality related to a terroir and crossing with their viticultural and oenological characteristics

The typicality of a product can be characterized by properties of similarity in relation to a type, but also by the properties of distinction.

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.