GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

Abstract

Introduction -The increasing frequency of extreme weather events (EWE) represents a severe threat to viticulture. The accurate and early assessment of plant stress condition offers substantial advantages to minimize the effects of EWE. Vegetation indices obtained by remote sensing could provide useful information for early detection and quantification of abiotic stresses.

Methods ‐ The analysis assessed several vineyards in Italy and Australia recently affected by EWE (2016‐ 18). The spatio‐temporal pattern of EWE (heatwaves, late frost) and their effects on vineyards were assessed by analysing the evolution of specific vegetation indices calculated using satellite imagery. The magnitude of indices variations was used to quantify the extent of canopy damage. Temporal variations were used to calculate the time necessary for complete recovery of the plants.
Results ‐ Different spectral bands (NIR, red edge, SWIR, green and red) and several vegetation indices provided information to quantify the extension of the areas damaged by EWE. The comparison of the indices values and single bands in affected and unaffected areas allowed the estimation of the temporal pattern in different climate conditions of the studied areas. Specifically, it was possible to quantify the recovery time, needed by plants to return to an acceptable vigour after damages induced by frost. The results provided a basis for better understanding and management of EWE effects.

Discussion ‐ The implementation of remote sensing techniques is widely used to monitor water status and spatial variability of the vineyards. By contrast, there is less application of these tools for monitoring effects and damages due to EWE. The results of this study demonstrate that the analysis of vegetation indices computed from remote sensing imagery can provide factual information of the spatio‐temporal pattern of vineyards affected by EWE. The methodology established could be used to support decision‐ making towards calamity alleviation, insurance services and recovery managemen

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Alessia COGATO1, Massimiliano DE ANTONI MIGLIORATI2, Vinay PAGAY3, Francesco MARINELLO1, Franco MEGGIO4, Peter GRACE2

(1) University of Padova, TESAF, Viale dell’Università 16, 35020 Padova, Italy
(2)Queensland University of Technology QUT,2 George St, Brisbane City QLD 4000, Australia
(3)The University of Adelaide, Adelaide, South Australia 5005, Australia
(4) University of Padova, DAFNAE, Viale dell’Università 16, 35020 Padova, Italy

Contact the author

Keywords

Grapevine,Extreme weather events, Climate change, Remote sensing, Spatio‐temporal pattern

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Context description and research question: an increasing number of farmers are considering the impact of conservation practices on soil health to guide sustainable management of vineyards. Understanding impacts of soil management on soil organic carbon (SOC) is one lever for adoption of agroecological practice with potential to help maintain or improve soil health while building SOC stocks to mitigate climate change (Amelung et al., 2020).

Influence of maturity on grape tyrosinase activity

Enzymatic browning of grape must remains a major issue in winemaking, especially when grapes are affected by grey rot.

Grapevine sugar concentration model in the Douro Superior, Portugal

Increasingly warm and dry climate conditions are challenging the viticulture and winemaking sector. Digital technologies and crop modelling bear the promise to provide practical answers to those challenges. As viticultural activities strongly depend on harvest date, its early prediction is particularly important, since the success of winemaking practices largely depends upon this key event, which should be based on an accurate and advanced plan of the annual cycle. Herein, we demonstrate the creation of modelling tools to assess grape ripeness, through sugar concentration monitoring. The study area, the Portuguese Côa valley wine region, represents an important terroir in the “Douro Superior” subregion. Two varieties (cv. Touriga Nacional and Touriga Franca) grown in five locations across the Côa Region were considered. Sugar accumulation in grapes, with concentrations between 170 and 230 g l-1, was used from 2014 to 2020 as an indicator of technological maturity conditioned by meteorological factors. The climatic time series were retrieved from the EU Copernicus Service, while sugar data were collected by a non-profit organization, ADVID, and by Sogrape, a leading wine company. The software for calibrating and validating this model framework was the Phenology Modeling Platform (PMP), version 5.5, using Sigmoid and growing degree-day (GDD) models for predictions. The performance was assessed through two metrics: Roots Mean Square Error (RMSE) and efficiency coefficient (EFF), while validation was undertaken using leave-one-out cross-validation. Our findings demonstrate that sugar content is mainly dependent on temperature and air humidity. The models achieved a performance of 0.65

What triggers the decision to ripen 

The decision for grape berries to ripen involves a complex interplay of genetic regulation and environmental cues. This review explores the molecular mechanisms underlying the transition from vegetative growth to ripening, focusing on transcriptomic studies and the role of the NAC gene family. Transcriptomic analyses reveal a significant rearrangement of gene expression patterns during this transition, with up-regulation of ripening-related genes and down-regulation of those associated with vegetative growth. A molecular phenology scale providing a high-precision map of berry transcriptomic development, indicates that key molecular changes occur well before the onset of ripening.