GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

Abstract

Introduction -The increasing frequency of extreme weather events (EWE) represents a severe threat to viticulture. The accurate and early assessment of plant stress condition offers substantial advantages to minimize the effects of EWE. Vegetation indices obtained by remote sensing could provide useful information for early detection and quantification of abiotic stresses.

Methods ‐ The analysis assessed several vineyards in Italy and Australia recently affected by EWE (2016‐ 18). The spatio‐temporal pattern of EWE (heatwaves, late frost) and their effects on vineyards were assessed by analysing the evolution of specific vegetation indices calculated using satellite imagery. The magnitude of indices variations was used to quantify the extent of canopy damage. Temporal variations were used to calculate the time necessary for complete recovery of the plants.
Results ‐ Different spectral bands (NIR, red edge, SWIR, green and red) and several vegetation indices provided information to quantify the extension of the areas damaged by EWE. The comparison of the indices values and single bands in affected and unaffected areas allowed the estimation of the temporal pattern in different climate conditions of the studied areas. Specifically, it was possible to quantify the recovery time, needed by plants to return to an acceptable vigour after damages induced by frost. The results provided a basis for better understanding and management of EWE effects.

Discussion ‐ The implementation of remote sensing techniques is widely used to monitor water status and spatial variability of the vineyards. By contrast, there is less application of these tools for monitoring effects and damages due to EWE. The results of this study demonstrate that the analysis of vegetation indices computed from remote sensing imagery can provide factual information of the spatio‐temporal pattern of vineyards affected by EWE. The methodology established could be used to support decision‐ making towards calamity alleviation, insurance services and recovery managemen

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Alessia COGATO1, Massimiliano DE ANTONI MIGLIORATI2, Vinay PAGAY3, Francesco MARINELLO1, Franco MEGGIO4, Peter GRACE2

(1) University of Padova, TESAF, Viale dell’Università 16, 35020 Padova, Italy
(2)Queensland University of Technology QUT,2 George St, Brisbane City QLD 4000, Australia
(3)The University of Adelaide, Adelaide, South Australia 5005, Australia
(4) University of Padova, DAFNAE, Viale dell’Università 16, 35020 Padova, Italy

Contact the author

Keywords

Grapevine,Extreme weather events, Climate change, Remote sensing, Spatio‐temporal pattern

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

Environment friendly nutrition supplying and soil cultivation methods applicable in the upper zone of hillside vineyards

Somló is Hungary’s smallest wine district, however one of the best producing white wines. The majority of vineyard areas are located on the slopes of Somló-hill, situated at the point where the Kisalföld meets Bakonyalja

New insight the pinking phenomena of white wine

Pinking of white wine is an undesired change potentially occurring over storage, leading to the turning of color from yellow into salmon-red hue.

La producción vitivinícola como fuente de impactos positivos en el medio seminatural

Wine is at risk of being labelled as a dangerous health product, based on studies that focus on its alcohol content. However, multiple studies suggest that moderate consumption is healthy. Changing the focus from health impacts to the environmental and socioeconomic impacts that wine companies cause, what can be said?

The origin and the discovery of “terroir”

Le mot “terroir” dérive du latin “terra”, mais déjà les Romains l’indiquaient comme “locus” ou”loci”, c’est-à-dire un lieu ayant le “genius”destiné à la production d’un produit d’excellente qualité.