GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

Abstract

Introduction -The increasing frequency of extreme weather events (EWE) represents a severe threat to viticulture. The accurate and early assessment of plant stress condition offers substantial advantages to minimize the effects of EWE. Vegetation indices obtained by remote sensing could provide useful information for early detection and quantification of abiotic stresses.

Methods ‐ The analysis assessed several vineyards in Italy and Australia recently affected by EWE (2016‐ 18). The spatio‐temporal pattern of EWE (heatwaves, late frost) and their effects on vineyards were assessed by analysing the evolution of specific vegetation indices calculated using satellite imagery. The magnitude of indices variations was used to quantify the extent of canopy damage. Temporal variations were used to calculate the time necessary for complete recovery of the plants.
Results ‐ Different spectral bands (NIR, red edge, SWIR, green and red) and several vegetation indices provided information to quantify the extension of the areas damaged by EWE. The comparison of the indices values and single bands in affected and unaffected areas allowed the estimation of the temporal pattern in different climate conditions of the studied areas. Specifically, it was possible to quantify the recovery time, needed by plants to return to an acceptable vigour after damages induced by frost. The results provided a basis for better understanding and management of EWE effects.

Discussion ‐ The implementation of remote sensing techniques is widely used to monitor water status and spatial variability of the vineyards. By contrast, there is less application of these tools for monitoring effects and damages due to EWE. The results of this study demonstrate that the analysis of vegetation indices computed from remote sensing imagery can provide factual information of the spatio‐temporal pattern of vineyards affected by EWE. The methodology established could be used to support decision‐ making towards calamity alleviation, insurance services and recovery managemen

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Alessia COGATO1, Massimiliano DE ANTONI MIGLIORATI2, Vinay PAGAY3, Francesco MARINELLO1, Franco MEGGIO4, Peter GRACE2

(1) University of Padova, TESAF, Viale dell’Università 16, 35020 Padova, Italy
(2)Queensland University of Technology QUT,2 George St, Brisbane City QLD 4000, Australia
(3)The University of Adelaide, Adelaide, South Australia 5005, Australia
(4) University of Padova, DAFNAE, Viale dell’Università 16, 35020 Padova, Italy

Contact the author

Keywords

Grapevine,Extreme weather events, Climate change, Remote sensing, Spatio‐temporal pattern

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Diversity and internationalization of wine grape varieties: Evidence from a revised global database

Aim: To quantify the extent to which national mixes of wine grape varieties (in terms of vineyard bearing area) have become more or less diversified, and ‘internationalized’, since wine globalization accelerated from the 1990s.

Vacuum distillation of Muscaris pomace: temperature effects on aroma composition

The consumption of wine in traditional wine-producing countries like Italy, Spain, and France is decreasing.

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to characterize from a sensory point of view, specific aromas of wines without added SO₂ and to identify compounds involved.

Relation between phenolic content, antioxidant capacity, oxygen consumption rate of diverse tannins

The work was aimed at comparing some analytical methods used to characterize oenological tannins and the measure of oxygen consumption rate (OCR), in order to provide oenologists with a rapid method to test the antioxidant capacity of tannin based products and a tool to choose the best suited product for each purpose.

Influence of social interaction levels on panel effectiveness in developing wine sensory profiles using consensus method

The development of sensory profiles is crucial for quality control and innovation in the wine industry. If quantitative descriptive analysis is the most commonly used method for establishing sensory profiles due to its robustness, it presents significant limitations.