terclim by ICS banner
IVES 9 IVES Conference Series 9 CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Abstract

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine. Indeed, uptake and consumption of malate and citrate by this bacteria enables to activate a proton motive force (PMF) hence maintaining an intracellular pH by proton consumption1,2.

Citrate is found in wine at small concentrations (0.13 to 0.90 g/L). It can be metabolized by O. oeni into acetate, pyruvate and then aromatic compounds such as diacetyl, acetoin and 2,3-butanediol. The ability of citrate metabolism to activate the PMF could play a central role in the acid-tolerance of this bacterium. Nevertheless, a previous study has described an inhibition of O. oeni growth at low pH in presence of high amounts of citrate3. This toxic effect could come from the synthesis of one of the citrate metabolites as acetate.

In order to understand how citrate metabolism can be linked to acid tolerance of this bacterium, consumption of citrate was investigated in a great diversity of O. oeni strains. In addition, malate and sugar consumptions were also followed, as they can be impacted by citrate metabolism. These experiments enabled to draw metabolic fluxes in O. oeni according to the pH of the medium. In most cases, ma- late is first metabolized, then citrate and sugars, sequentially, proving that the priority is given to organic acid consumption at the expense of sugars in this bacterium. However, this experiment revealed different citrate consumption profiles which may be correlated to a greater or lesser acid tolerance according to the strain. Furthermore, a genomic comparison demonstrated the presence of mutations in the citrate operon of acid-tolerant industrial strains. Hence, acid tolerance could be linked to a change in the rate of citrate consumption in O. oeni.

 

1. Ramos, A., Poolman, B., Santos, H., Lolkema, J.S., Konings, W.N., 1994. Uniport of anionic citrate and proton consumption in ci-trate metabolism generates a proton motive force in Leuconostoc oenos. J. Bacteriol. 176, 4899–4905. https://doi.org/10.1128/jb.176.16.4899-4905.1994
2. Salema, M., Lolkema, J.S., Romão, M.V.S., Dias, M.C.L., 1996. The proton motive force generated in Leuconostoc oenos by L-malate fermentation. J. Bacteriol. 178, 3127–3132. https://doi.org/10.1128/jb.178.11.3127-3132.1996
3. Augagneur, Y., Ritt, J.-F., Linares, D.M., Remize, F., Tourdot-Maréchal, R., Garmyn, D., Guzzo, J., 2007. Dual effect of organic acids as a function of external pH in Oenococcus oeni. Arch. Microbiol. 188, 147–157. https://doi.org/10.1007/s00203-007-0230-0

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Camille Eicher1, Joana Coulon2, Marion Favier2, Edouard Munier1, Thierry Tran1, Hervé Alexandre1, Cristina Reguant Miran-da3, Cosette Grandvalet1

1. UMR A. 02.102 Procédés Alimentaires et Microbiologiques, L’institut Agro Dijon, Université de Bourgogne Franche-Comté, Dijon, France
2. BioLaffort, Floirac, France
3. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili, Tarragona, Spain

Contact the author*

Keywords

Oenococcus oeni, Citrate, Metabolic fluxes, Acid-tolerance

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinki-sh-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired.