terclim by ICS banner
IVES 9 IVES Conference Series 9 CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Abstract

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine. Indeed, uptake and consumption of malate and citrate by this bacteria enables to activate a proton motive force (PMF) hence maintaining an intracellular pH by proton consumption1,2.

Citrate is found in wine at small concentrations (0.13 to 0.90 g/L). It can be metabolized by O. oeni into acetate, pyruvate and then aromatic compounds such as diacetyl, acetoin and 2,3-butanediol. The ability of citrate metabolism to activate the PMF could play a central role in the acid-tolerance of this bacterium. Nevertheless, a previous study has described an inhibition of O. oeni growth at low pH in presence of high amounts of citrate3. This toxic effect could come from the synthesis of one of the citrate metabolites as acetate.

In order to understand how citrate metabolism can be linked to acid tolerance of this bacterium, consumption of citrate was investigated in a great diversity of O. oeni strains. In addition, malate and sugar consumptions were also followed, as they can be impacted by citrate metabolism. These experiments enabled to draw metabolic fluxes in O. oeni according to the pH of the medium. In most cases, ma- late is first metabolized, then citrate and sugars, sequentially, proving that the priority is given to organic acid consumption at the expense of sugars in this bacterium. However, this experiment revealed different citrate consumption profiles which may be correlated to a greater or lesser acid tolerance according to the strain. Furthermore, a genomic comparison demonstrated the presence of mutations in the citrate operon of acid-tolerant industrial strains. Hence, acid tolerance could be linked to a change in the rate of citrate consumption in O. oeni.

 

1. Ramos, A., Poolman, B., Santos, H., Lolkema, J.S., Konings, W.N., 1994. Uniport of anionic citrate and proton consumption in ci-trate metabolism generates a proton motive force in Leuconostoc oenos. J. Bacteriol. 176, 4899–4905. https://doi.org/10.1128/jb.176.16.4899-4905.1994
2. Salema, M., Lolkema, J.S., Romão, M.V.S., Dias, M.C.L., 1996. The proton motive force generated in Leuconostoc oenos by L-malate fermentation. J. Bacteriol. 178, 3127–3132. https://doi.org/10.1128/jb.178.11.3127-3132.1996
3. Augagneur, Y., Ritt, J.-F., Linares, D.M., Remize, F., Tourdot-Maréchal, R., Garmyn, D., Guzzo, J., 2007. Dual effect of organic acids as a function of external pH in Oenococcus oeni. Arch. Microbiol. 188, 147–157. https://doi.org/10.1007/s00203-007-0230-0

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Camille Eicher1, Joana Coulon2, Marion Favier2, Edouard Munier1, Thierry Tran1, Hervé Alexandre1, Cristina Reguant Miran-da3, Cosette Grandvalet1

1. UMR A. 02.102 Procédés Alimentaires et Microbiologiques, L’institut Agro Dijon, Université de Bourgogne Franche-Comté, Dijon, France
2. BioLaffort, Floirac, France
3. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili, Tarragona, Spain

Contact the author*

Keywords

Oenococcus oeni, Citrate, Metabolic fluxes, Acid-tolerance

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions.

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).