terclim by ICS banner
IVES 9 IVES Conference Series 9 CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Abstract

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine. Indeed, uptake and consumption of malate and citrate by this bacteria enables to activate a proton motive force (PMF) hence maintaining an intracellular pH by proton consumption1,2.

Citrate is found in wine at small concentrations (0.13 to 0.90 g/L). It can be metabolized by O. oeni into acetate, pyruvate and then aromatic compounds such as diacetyl, acetoin and 2,3-butanediol. The ability of citrate metabolism to activate the PMF could play a central role in the acid-tolerance of this bacterium. Nevertheless, a previous study has described an inhibition of O. oeni growth at low pH in presence of high amounts of citrate3. This toxic effect could come from the synthesis of one of the citrate metabolites as acetate.

In order to understand how citrate metabolism can be linked to acid tolerance of this bacterium, consumption of citrate was investigated in a great diversity of O. oeni strains. In addition, malate and sugar consumptions were also followed, as they can be impacted by citrate metabolism. These experiments enabled to draw metabolic fluxes in O. oeni according to the pH of the medium. In most cases, ma- late is first metabolized, then citrate and sugars, sequentially, proving that the priority is given to organic acid consumption at the expense of sugars in this bacterium. However, this experiment revealed different citrate consumption profiles which may be correlated to a greater or lesser acid tolerance according to the strain. Furthermore, a genomic comparison demonstrated the presence of mutations in the citrate operon of acid-tolerant industrial strains. Hence, acid tolerance could be linked to a change in the rate of citrate consumption in O. oeni.

 

1. Ramos, A., Poolman, B., Santos, H., Lolkema, J.S., Konings, W.N., 1994. Uniport of anionic citrate and proton consumption in ci-trate metabolism generates a proton motive force in Leuconostoc oenos. J. Bacteriol. 176, 4899–4905. https://doi.org/10.1128/jb.176.16.4899-4905.1994
2. Salema, M., Lolkema, J.S., Romão, M.V.S., Dias, M.C.L., 1996. The proton motive force generated in Leuconostoc oenos by L-malate fermentation. J. Bacteriol. 178, 3127–3132. https://doi.org/10.1128/jb.178.11.3127-3132.1996
3. Augagneur, Y., Ritt, J.-F., Linares, D.M., Remize, F., Tourdot-Maréchal, R., Garmyn, D., Guzzo, J., 2007. Dual effect of organic acids as a function of external pH in Oenococcus oeni. Arch. Microbiol. 188, 147–157. https://doi.org/10.1007/s00203-007-0230-0

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Camille Eicher1, Joana Coulon2, Marion Favier2, Edouard Munier1, Thierry Tran1, Hervé Alexandre1, Cristina Reguant Miran-da3, Cosette Grandvalet1

1. UMR A. 02.102 Procédés Alimentaires et Microbiologiques, L’institut Agro Dijon, Université de Bourgogne Franche-Comté, Dijon, France
2. BioLaffort, Floirac, France
3. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili, Tarragona, Spain

Contact the author*

Keywords

Oenococcus oeni, Citrate, Metabolic fluxes, Acid-tolerance

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Managing changes in taste: lessons from champagne in britain 1800-1914

This paper focuses on how taste in wine (and other foods) changes and the implications of this process
for producers and merchants.
It draws primarily on the changing taste of and taste for champagne in Britain in the 19th century. Between 1850 and 1880 champagne went from a dosage level of around 20% (20 grams sugar / litre) to 0%. Champagne became the ‘dinner wine of the elite – drunk with roast meat and savoury dishes.
Contemporaries accepted that while most people could distinguish the taste of good champagne from that of bad, very few could distinguish very good from good.

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...