terclim by ICS banner
IVES 9 IVES Conference Series 9 CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Abstract

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine. Indeed, uptake and consumption of malate and citrate by this bacteria enables to activate a proton motive force (PMF) hence maintaining an intracellular pH by proton consumption1,2.

Citrate is found in wine at small concentrations (0.13 to 0.90 g/L). It can be metabolized by O. oeni into acetate, pyruvate and then aromatic compounds such as diacetyl, acetoin and 2,3-butanediol. The ability of citrate metabolism to activate the PMF could play a central role in the acid-tolerance of this bacterium. Nevertheless, a previous study has described an inhibition of O. oeni growth at low pH in presence of high amounts of citrate3. This toxic effect could come from the synthesis of one of the citrate metabolites as acetate.

In order to understand how citrate metabolism can be linked to acid tolerance of this bacterium, consumption of citrate was investigated in a great diversity of O. oeni strains. In addition, malate and sugar consumptions were also followed, as they can be impacted by citrate metabolism. These experiments enabled to draw metabolic fluxes in O. oeni according to the pH of the medium. In most cases, ma- late is first metabolized, then citrate and sugars, sequentially, proving that the priority is given to organic acid consumption at the expense of sugars in this bacterium. However, this experiment revealed different citrate consumption profiles which may be correlated to a greater or lesser acid tolerance according to the strain. Furthermore, a genomic comparison demonstrated the presence of mutations in the citrate operon of acid-tolerant industrial strains. Hence, acid tolerance could be linked to a change in the rate of citrate consumption in O. oeni.

 

1. Ramos, A., Poolman, B., Santos, H., Lolkema, J.S., Konings, W.N., 1994. Uniport of anionic citrate and proton consumption in ci-trate metabolism generates a proton motive force in Leuconostoc oenos. J. Bacteriol. 176, 4899–4905. https://doi.org/10.1128/jb.176.16.4899-4905.1994
2. Salema, M., Lolkema, J.S., Romão, M.V.S., Dias, M.C.L., 1996. The proton motive force generated in Leuconostoc oenos by L-malate fermentation. J. Bacteriol. 178, 3127–3132. https://doi.org/10.1128/jb.178.11.3127-3132.1996
3. Augagneur, Y., Ritt, J.-F., Linares, D.M., Remize, F., Tourdot-Maréchal, R., Garmyn, D., Guzzo, J., 2007. Dual effect of organic acids as a function of external pH in Oenococcus oeni. Arch. Microbiol. 188, 147–157. https://doi.org/10.1007/s00203-007-0230-0

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Camille Eicher1, Joana Coulon2, Marion Favier2, Edouard Munier1, Thierry Tran1, Hervé Alexandre1, Cristina Reguant Miran-da3, Cosette Grandvalet1

1. UMR A. 02.102 Procédés Alimentaires et Microbiologiques, L’institut Agro Dijon, Université de Bourgogne Franche-Comté, Dijon, France
2. BioLaffort, Floirac, France
3. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili, Tarragona, Spain

Contact the author*

Keywords

Oenococcus oeni, Citrate, Metabolic fluxes, Acid-tolerance

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.