terclim by ICS banner
IVES 9 IVES Conference Series 9 CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Abstract

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine. Indeed, uptake and consumption of malate and citrate by this bacteria enables to activate a proton motive force (PMF) hence maintaining an intracellular pH by proton consumption1,2.

Citrate is found in wine at small concentrations (0.13 to 0.90 g/L). It can be metabolized by O. oeni into acetate, pyruvate and then aromatic compounds such as diacetyl, acetoin and 2,3-butanediol. The ability of citrate metabolism to activate the PMF could play a central role in the acid-tolerance of this bacterium. Nevertheless, a previous study has described an inhibition of O. oeni growth at low pH in presence of high amounts of citrate3. This toxic effect could come from the synthesis of one of the citrate metabolites as acetate.

In order to understand how citrate metabolism can be linked to acid tolerance of this bacterium, consumption of citrate was investigated in a great diversity of O. oeni strains. In addition, malate and sugar consumptions were also followed, as they can be impacted by citrate metabolism. These experiments enabled to draw metabolic fluxes in O. oeni according to the pH of the medium. In most cases, ma- late is first metabolized, then citrate and sugars, sequentially, proving that the priority is given to organic acid consumption at the expense of sugars in this bacterium. However, this experiment revealed different citrate consumption profiles which may be correlated to a greater or lesser acid tolerance according to the strain. Furthermore, a genomic comparison demonstrated the presence of mutations in the citrate operon of acid-tolerant industrial strains. Hence, acid tolerance could be linked to a change in the rate of citrate consumption in O. oeni.

 

1. Ramos, A., Poolman, B., Santos, H., Lolkema, J.S., Konings, W.N., 1994. Uniport of anionic citrate and proton consumption in ci-trate metabolism generates a proton motive force in Leuconostoc oenos. J. Bacteriol. 176, 4899–4905. https://doi.org/10.1128/jb.176.16.4899-4905.1994
2. Salema, M., Lolkema, J.S., Romão, M.V.S., Dias, M.C.L., 1996. The proton motive force generated in Leuconostoc oenos by L-malate fermentation. J. Bacteriol. 178, 3127–3132. https://doi.org/10.1128/jb.178.11.3127-3132.1996
3. Augagneur, Y., Ritt, J.-F., Linares, D.M., Remize, F., Tourdot-Maréchal, R., Garmyn, D., Guzzo, J., 2007. Dual effect of organic acids as a function of external pH in Oenococcus oeni. Arch. Microbiol. 188, 147–157. https://doi.org/10.1007/s00203-007-0230-0

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Camille Eicher1, Joana Coulon2, Marion Favier2, Edouard Munier1, Thierry Tran1, Hervé Alexandre1, Cristina Reguant Miran-da3, Cosette Grandvalet1

1. UMR A. 02.102 Procédés Alimentaires et Microbiologiques, L’institut Agro Dijon, Université de Bourgogne Franche-Comté, Dijon, France
2. BioLaffort, Floirac, France
3. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili, Tarragona, Spain

Contact the author*

Keywords

Oenococcus oeni, Citrate, Metabolic fluxes, Acid-tolerance

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used.

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.