terclim by ICS banner
IVES 9 IVES Conference Series 9 WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Abstract

Previous research on the fruity character of red wines highlighted the role of esters. Literature provi- des evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.

Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception. Then, the impact of these non-volatile molecules on esters volatility, and thus taster stimulation, was evaluated thanks to the determination of partition coefficients.

Our results showed that the presence of tannins in the matrix significantly attenuated perception of fruity notes. In a consistant way, physico-chemical analysis demonstrated also that the presence of proanthocyanidic tannins in dilute alcohol solution resulted in a decrease in ester partition coefficients and thus in a decrease in ester contents in the headspace. This fact highlighted pre-sensory changes. Finally, a new sensory tool was developed, consisting in an ISO glass containing two identical compartments separated by a vertical glass wall, providing a way to compare perceived odours according to whether or not the components of the odour mixtures were actually mixed in solution. This new tool was used to demonstrate the impact of the physical mixture of proanthocyanidic tannins and esters in order to demonstrate the exclusive involvement of pre-sensory interactions.

These results confirmed the sensory impact of some non-volatile compounds on odor perception. Finally, esters partition coefficient evaluation revealed a decrease of the volatility of esters when tannins were present in the matrix, thus corroborating sensory evaluation results. Proanthocyanidic tannins decrease esters volatility when they are added in the matrix, thus reducing orthonasal taster stimulation and consequently reducing red wine fruity notes perception. Such a study should be extended to anthocyanins and other oenological tannins and, including their concentration ranges, to assess the impact of the phenolic matrix on red wines aroma perception.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Margaux Cameleyre1,2, Georgia Lytra1,2, Jean-Christophe Barbe1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

Wine, Non-volatiles, Interactions

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used.

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.