terclim by ICS banner
IVES 9 IVES Conference Series 9 WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Abstract

Previous research on the fruity character of red wines highlighted the role of esters. Literature provi- des evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.

Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception. Then, the impact of these non-volatile molecules on esters volatility, and thus taster stimulation, was evaluated thanks to the determination of partition coefficients.

Our results showed that the presence of tannins in the matrix significantly attenuated perception of fruity notes. In a consistant way, physico-chemical analysis demonstrated also that the presence of proanthocyanidic tannins in dilute alcohol solution resulted in a decrease in ester partition coefficients and thus in a decrease in ester contents in the headspace. This fact highlighted pre-sensory changes. Finally, a new sensory tool was developed, consisting in an ISO glass containing two identical compartments separated by a vertical glass wall, providing a way to compare perceived odours according to whether or not the components of the odour mixtures were actually mixed in solution. This new tool was used to demonstrate the impact of the physical mixture of proanthocyanidic tannins and esters in order to demonstrate the exclusive involvement of pre-sensory interactions.

These results confirmed the sensory impact of some non-volatile compounds on odor perception. Finally, esters partition coefficient evaluation revealed a decrease of the volatility of esters when tannins were present in the matrix, thus corroborating sensory evaluation results. Proanthocyanidic tannins decrease esters volatility when they are added in the matrix, thus reducing orthonasal taster stimulation and consequently reducing red wine fruity notes perception. Such a study should be extended to anthocyanins and other oenological tannins and, including their concentration ranges, to assess the impact of the phenolic matrix on red wines aroma perception.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Margaux Cameleyre1,2, Georgia Lytra1,2, Jean-Christophe Barbe1,2

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France

Contact the author*

Keywords

Wine, Non-volatiles, Interactions

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.
The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.