terclim by ICS banner
IVES 9 IVES Conference Series 9 OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

Abstract

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

 

1. Vineyard management: Sustainable vineyard management involves practices that minimize the use of chemicals and pesticides, conserve water, and promote soil health
2. Energy efficiency: Wineries can reduce their carbon footprint by implementing energy-efficient practices, such as using renewable energy sources, investing in energy-efficient equipment, and improving insulation.
3. Water conservation: Water is a critical resource in wine production, and sustainable wineries seek to minimize water use through measures like drip irrigation, rainwater harvesting, and recycling wastewater.
4. Packaging and shipping: Sustainable wineries aim to reduce the environmental impact of their packaging and shipping practices by using recycled materials, minimizing packaging waste, and reducing transportation emissions.
5. Social responsibility: Sustainable wineries also prioritize social responsibility by treating workers fairly, supporting local communities, and promoting diversity and inclusion.
One of the proposed approaches is to expand the use of disease resistant hybrid grape cultivars (DRHGC) (‘PIWI’ grapes), and to introduce new DRHGCs, which have the potential to assist with the implementation of the European Green Deal 2050 and the EU ‘Farm to Fork’ strategy. DRHGCs have thus been very recently permitted for PDO wines, leading to a completely new perspective in the production of wines with protected appellation (“Regulation (EU) 2021/2117,” 2021). DRHGCs are of interest since they allow for much fewer treatments in the vineyard and thus can limit the indirect negative consequences of such treatments: improved job security due to less labor in the fields; less soil compaction in the vineyard; positive impacts on responsible tourism and on neighbouring activities, particularly in the context of (perurban viticulture. However, the characteristics of DRHGCs wines are different, which makes it necessary to take measures and make changes in winemaking technology to maintain high quality. The winemaker must account for high titratable acidity, malic acid, pH, protein, polysaccharide levels and low condensed tannin levels. This can leave them vulnerable to microbial spoilage and would lower the astringency of DRHGC wines. DRHGCs often have problems due to too high yeast assimilable nitrogen leading to excessively hot fermentations. An interdisciplinary analysis is being carried on in South Tyrol where PIWI wines are cultivated, with the aim to produce a case test on different target groups: producers, retailers and buyers, hospitality workers, and consumers regarding both the environmental advantages and the particularities of wines made from DRHGCs (PIWI wines).

1. Duley G., Ceci, A.T., Longo E., Boselli E. (2023). Oenological potential of wines produced from disease resistant grape cultivars, Comprehensive Reviews in Food Science and Food Safety (in press)

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Emanuele Boselli1,2*†, Federica Viganò3

1. Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100 Bolzano, Italy
2. Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
3. Faculty of Education, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy

Contact the author*

Keywords

PIWI, winemaking, social sustainability, ecological transition

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.