terclim by ICS banner
IVES 9 IVES Conference Series 9 OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

Abstract

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

 

1. Vineyard management: Sustainable vineyard management involves practices that minimize the use of chemicals and pesticides, conserve water, and promote soil health
2. Energy efficiency: Wineries can reduce their carbon footprint by implementing energy-efficient practices, such as using renewable energy sources, investing in energy-efficient equipment, and improving insulation.
3. Water conservation: Water is a critical resource in wine production, and sustainable wineries seek to minimize water use through measures like drip irrigation, rainwater harvesting, and recycling wastewater.
4. Packaging and shipping: Sustainable wineries aim to reduce the environmental impact of their packaging and shipping practices by using recycled materials, minimizing packaging waste, and reducing transportation emissions.
5. Social responsibility: Sustainable wineries also prioritize social responsibility by treating workers fairly, supporting local communities, and promoting diversity and inclusion.
One of the proposed approaches is to expand the use of disease resistant hybrid grape cultivars (DRHGC) (‘PIWI’ grapes), and to introduce new DRHGCs, which have the potential to assist with the implementation of the European Green Deal 2050 and the EU ‘Farm to Fork’ strategy. DRHGCs have thus been very recently permitted for PDO wines, leading to a completely new perspective in the production of wines with protected appellation (“Regulation (EU) 2021/2117,” 2021). DRHGCs are of interest since they allow for much fewer treatments in the vineyard and thus can limit the indirect negative consequences of such treatments: improved job security due to less labor in the fields; less soil compaction in the vineyard; positive impacts on responsible tourism and on neighbouring activities, particularly in the context of (perurban viticulture. However, the characteristics of DRHGCs wines are different, which makes it necessary to take measures and make changes in winemaking technology to maintain high quality. The winemaker must account for high titratable acidity, malic acid, pH, protein, polysaccharide levels and low condensed tannin levels. This can leave them vulnerable to microbial spoilage and would lower the astringency of DRHGC wines. DRHGCs often have problems due to too high yeast assimilable nitrogen leading to excessively hot fermentations. An interdisciplinary analysis is being carried on in South Tyrol where PIWI wines are cultivated, with the aim to produce a case test on different target groups: producers, retailers and buyers, hospitality workers, and consumers regarding both the environmental advantages and the particularities of wines made from DRHGCs (PIWI wines).

1. Duley G., Ceci, A.T., Longo E., Boselli E. (2023). Oenological potential of wines produced from disease resistant grape cultivars, Comprehensive Reviews in Food Science and Food Safety (in press)

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Emanuele Boselli1,2*†, Federica Viganò3

1. Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100 Bolzano, Italy
2. Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
3. Faculty of Education, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy

Contact the author*

Keywords

PIWI, winemaking, social sustainability, ecological transition

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.