terclim by ICS banner
IVES 9 IVES Conference Series 9 INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Abstract

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour. Six commercial non-Saccharomyces yeast species and two commercial Saccharomyces cerevisiae strains were assayed based on their sedimentation rates in synthetic grape must, both individually and in combination, to determine flocculation ability. The most flocculent S. cerevisiae and non-Saccharomyces spp. yeast pairings, RC212 + BIODIVA and VL3 + BIODIVA, were used in a 20 L-scale Pinot noir winemaking trial. Ul- traviolet-visible spectrophotometric measurements of wine colour parameters, and sensory evaluation of wine appearance, found that mixed species fermentations produced wines with greater colour density. Total and monomeric anthocyanin concentrations were lower in sequentially-inoculated wines, despite being the main source of young red wine colour. Pigmentation assays indicated a higher adsorption of anthocyanins by BIODIVA than S. cerevisiae, suggesting that greater amounts of cell wall mannoproteins in flocculent yeast may scavenge anthocyanins during fermentation, allowing for their subsequent release from the lees and potential for enhanced formation of copigments. Findings from this research have wide application in the industry to increase red wine colour intensity, particular in thin- skinned red grape varieties.

 

1. Carew, A. L.; Smith, P.; Close, D. C.; Curtin, C.; Dambergs, R. G. Yeast Effects on Pinot Noir Wine Phenolics, Color, and Tannin Composition. J. Agric. Food Chem. 2013, 61 (41), 9892–9898. https://doi.org/10.1021/jf4018806.
2. Varela, C.; Bartel, C.; Nandorfy, D. E.; Borneman, A.; Schmidt, S.; Curtin, C. Identification of Flocculant Wine Yeast Strains with Improved Filtration-Related Phenotypes through Application of High-Throughput Sedimentation Rate Assays. Sci. Rep. 2020, 10 (1). https://doi.org/10.1038/s41598-020-59579-y.
3. Parpinello, G. P.; Versari, A.; Chinnici, F.; Galassi, S. Relationship among Sensory Descriptors, Consumer Preference and Color Parameters of Italian Novello Red Wines. Food Res. Int. 2009, 42 (10), 1389–1395. https://doi.org/10.1016/j.foodres.2009.07.005.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Katasha S. MCCULLOUGH1,2, Yi YANG2, Melodie A. LINDSAY2 and Neill CULLEY2

1. School of Biological Sciences, The University of Auckland
2. School of Chemical Sciences, The University of Auckland

Contact the author*

Keywords

Anthocyanins, Colour density, Pinot noir, Sequential inoculation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).