terclim by ICS banner
IVES 9 IVES Conference Series 9 THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Abstract

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines. Sauvignon Blanc and Istrian Malvasia musts were inoculated sequentially with different species of non-Saccharomyces yeasts (Pichia kluyveri FrootZen (Chr. Hansen Holding A/S), Kluyveromyces dobzhanskii Re19L, Pichia guilliermondii ZIM624, Starmerella orientalis 126, Torulaspora delbrueckii IVV7, Lachancea thermotolerans BLF LT7 (Laffort),) and yeasts of the Saccharomyces genus (S. cerevisiae Zymaflore X5 (Laffort), S. uvarum NO608/1, S. cerevisiae Ca39). Fermentation kinetics and reducing sugars content were monitored gravimetrically during alcoholic fermentation. After completion of alcoholic fermentation, physicochemical analyses were performed, and the content of volatile thiols and esters was determined by GC-MS and the content of hydroxycinnamates by HPLC-DAD. We also performed sensory analysis using intensity ranking test. The mixed yeast cultures showed differences in fermentation kinetics, in the ability to release thiols, and in the synthesis of esters during alcoholic fermentation. According to the sensory evaluation, the best evaluated wine was produced with the yeast K. dobzhanskii Re19L in the vinification of Sauvignon Blanc and with T. delbrueckii IVV7 in the Istrian Malvasia variety.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Lorena Butinar1, Patricija Ploj-Jesenko2, Guillaume Antalick1, Melita Sternad Lemut1, Mitja Martelanc1, Katja Šuklje3, Andreja Vanzo3, Klemen Lisjak3

1University of Nova Gorica, Wine Research Centre, Glavni trg 8, 5271 Vipava, Slovenia
2University of Ljubljana, Biotechnical Faculty, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
3Agricultural Institute of Slovenia, Central Laboratories, Hacquetova ulica 17, 1000 Ljubljana, Sloveni

Contact the author*

Keywords

non-Saccharomyces yeasts, volatile thiols, esters, sensory properties

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinki-sh-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired.

EFFECTS OF WINEMAKING FACTORS AND AGEING ON THE POLYPHENOLIC AND COLORIMETRIC PROFILES IN RED WINES PRONE TO COLOUR INSTABILITY

The effects of (A) grape freezing, and (B) malolactic fermentation, have been evaluated on the chemical and colorimetric profiles of red wines from Schiava grossa cv. grapes, thus prone to colour instability. The aim was to observe if specific variables (e.g. grape freezing) could improve the extraction and stability of pigments. The samples were studied from musts up to twelve months in bottle. The study was conducted with independent parallel micro-vinifications (12 = 4 theses x 3 replicates) under strictly-controlled conditions.