terclim by ICS banner
IVES 9 IVES Conference Series 9 THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Abstract

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines. Sauvignon Blanc and Istrian Malvasia musts were inoculated sequentially with different species of non-Saccharomyces yeasts (Pichia kluyveri FrootZen (Chr. Hansen Holding A/S), Kluyveromyces dobzhanskii Re19L, Pichia guilliermondii ZIM624, Starmerella orientalis 126, Torulaspora delbrueckii IVV7, Lachancea thermotolerans BLF LT7 (Laffort),) and yeasts of the Saccharomyces genus (S. cerevisiae Zymaflore X5 (Laffort), S. uvarum NO608/1, S. cerevisiae Ca39). Fermentation kinetics and reducing sugars content were monitored gravimetrically during alcoholic fermentation. After completion of alcoholic fermentation, physicochemical analyses were performed, and the content of volatile thiols and esters was determined by GC-MS and the content of hydroxycinnamates by HPLC-DAD. We also performed sensory analysis using intensity ranking test. The mixed yeast cultures showed differences in fermentation kinetics, in the ability to release thiols, and in the synthesis of esters during alcoholic fermentation. According to the sensory evaluation, the best evaluated wine was produced with the yeast K. dobzhanskii Re19L in the vinification of Sauvignon Blanc and with T. delbrueckii IVV7 in the Istrian Malvasia variety.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Lorena Butinar1, Patricija Ploj-Jesenko2, Guillaume Antalick1, Melita Sternad Lemut1, Mitja Martelanc1, Katja Šuklje3, Andreja Vanzo3, Klemen Lisjak3

1University of Nova Gorica, Wine Research Centre, Glavni trg 8, 5271 Vipava, Slovenia
2University of Ljubljana, Biotechnical Faculty, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
3Agricultural Institute of Slovenia, Central Laboratories, Hacquetova ulica 17, 1000 Ljubljana, Sloveni

Contact the author*

Keywords

non-Saccharomyces yeasts, volatile thiols, esters, sensory properties

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

CHARACTERIZATION OF ENOLOGICAL OAK TANNIN EXTRACTS BY MULTI-ANALYTICAL METHODS APPROACH

Oak tannin extracts are commonly used to improve wine properties. The main polyphenols found in oak wood extracts are ellagitannins¹ that release ellagic acid upon hydrolysis and comprise numerous structures². Moreover, oak tannin extracts contain other compounds giving a complex mixture. Consequently, the official OIV method based on gravimetric analysis of the tannin fraction adsorbed on polyvinylpolypyrrolidone is not sufficient to describe their composition and highlight their chemical diversity.

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).