terclim by ICS banner
IVES 9 IVES Conference Series 9 THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Abstract

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines. Sauvignon Blanc and Istrian Malvasia musts were inoculated sequentially with different species of non-Saccharomyces yeasts (Pichia kluyveri FrootZen (Chr. Hansen Holding A/S), Kluyveromyces dobzhanskii Re19L, Pichia guilliermondii ZIM624, Starmerella orientalis 126, Torulaspora delbrueckii IVV7, Lachancea thermotolerans BLF LT7 (Laffort),) and yeasts of the Saccharomyces genus (S. cerevisiae Zymaflore X5 (Laffort), S. uvarum NO608/1, S. cerevisiae Ca39). Fermentation kinetics and reducing sugars content were monitored gravimetrically during alcoholic fermentation. After completion of alcoholic fermentation, physicochemical analyses were performed, and the content of volatile thiols and esters was determined by GC-MS and the content of hydroxycinnamates by HPLC-DAD. We also performed sensory analysis using intensity ranking test. The mixed yeast cultures showed differences in fermentation kinetics, in the ability to release thiols, and in the synthesis of esters during alcoholic fermentation. According to the sensory evaluation, the best evaluated wine was produced with the yeast K. dobzhanskii Re19L in the vinification of Sauvignon Blanc and with T. delbrueckii IVV7 in the Istrian Malvasia variety.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Lorena Butinar1, Patricija Ploj-Jesenko2, Guillaume Antalick1, Melita Sternad Lemut1, Mitja Martelanc1, Katja Šuklje3, Andreja Vanzo3, Klemen Lisjak3

1University of Nova Gorica, Wine Research Centre, Glavni trg 8, 5271 Vipava, Slovenia
2University of Ljubljana, Biotechnical Faculty, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
3Agricultural Institute of Slovenia, Central Laboratories, Hacquetova ulica 17, 1000 Ljubljana, Sloveni

Contact the author*

Keywords

non-Saccharomyces yeasts, volatile thiols, esters, sensory properties

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.