terclim by ICS banner
IVES 9 IVES Conference Series 9 BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

Abstract

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.

Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

In this work, we selected four YCW derived from two different yeast genera (Brettanomyces/Dekkera and Saccharomyces) prepared by two processes, autolysis or with a high-pressure homogenizer (HPH). We investigated the effects of both genus and treatment on the capacity of adsorption of CA and EP. The operating parameters affecting adsorption, such as contact time, sorbent dosage, and initial CA and EP concentration, were studied to evaluate their influence on the adsorption capacity. The competition between the two adsorbates on the sorption sites was also investigated.

The adsorbed amounts of CA and EP by the YCW increased as the concentration of the adsorbent increased, regardless of their initial concentration. This might be explained by the increase in active vacant sorption sites and surface area available for the adsorption of CA and EP.

At equilibrium, the specific adsorption capacity of YCW increased when the initial concentration of adsorbate increased. The resistance to mass transfer of the adsorbate between liquid and solid phases is overcome by the driving force, which is determined by the initial concentration of the adsorbate. As the adsorbate’s initial concentration increased, the concentration gradient’s driving force increased, which explains the increase in adsorption.

The specific adsorption capacity decreased when the two adsorbates were together in the medium. First, the adsorption capacity of EP is higher than CA, indicating that EP has specific sites on the YCW that are different from CA. Second, the adsorption capacity is higher when the adsorbate is alone in the medium, implying competition between the two adsorbates. There are probably some common sites for CA and EP on YCW.

 

1. C. S. D. Costa, B. G. M. Queiroz, R. Landers, M. G. C. da Silva, and M. G. A. Vieira, “Equilibrium study of binary mixture biosorption of Cr(III) and Zn(II) by dealginated seaweed waste: Investigation of adsorption mechanisms using X-ray photoelectron spectroscopy analysis,” Environ. Sci. Pollut. Res. Int., vol. 26, pp. 28470–28480, 2019.
2. S. Mor, K. Chhoden, K. Ravindra, and R. Khaiwal, “Application of agro-waste rice husk ash for the removal of phosphate from the wastewater,” J. Clean. Prod., vol. 129, pp. 673–680, 2016.
3. A. B. Albadarin, C. Mangwandi, A. Al-Muhtaseb, G. M. Walker, S. J. Allen, and M. Ahmad, “Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent,” Chem. Eng. J., vol. 179, pp. 193–202, 2012.
4. Senthil Kumar, P., Vincent, C., Kirthika, K., & Sathish Kumar, K., Kinetics and equilibrium studies of Pb2+ ion removal from aqueous solutions by use of nano-silversol-coated activated carbon, Braz. J. Chem. Eng., 2010, 27(2), 339–346.
5. Nandi, B. K., Goswami, A., Das, A. K., Mondal, B., & Purkait, M. K., Kinetic and equilibrium studies on the adsorption of crystal violet dye using Kaolin as an adsorbent. Separation Science and Technology, 2008, 43(6), 1382–1403.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Elena Bakhos1,2,3, Dominique Salameh2, Nathalie Sieczkowski3, Cedric Brandam1

1. Laboratoire de génie chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
2. Université Saint-Joseph de Beyrouth, Faculté des sciences, Mar Roukos, Liban
3. Lallemand SAS, Blagnac, France

Contact the author*

Keywords

4-ethylphenol, biosorption, yeast cell walls, competitive adsorption

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinki-sh-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired.

THE EFFECT OF DIFFERENT TERROIRS ON AROMA COMPOUNDS OF ‘KALECIK KARASI’ WINES

Kalecik Karası is a domestic grape variety of Turkey, originating from Kalecik district, 80 km from Ankara. Although there is no definite evidence, it is known that it was used in wine production by many civilizations that lived in the Anatolian region, especially the Hittites. Compared to other black wine grapes, it stands out with its low tannin content, rich fruity aroma and complex structure. In good vintages, red fruits such as strawberries, cherries and raspberries stand out in the aroma profile. Although its structure is elegant, it has the potential to age and develop similar to the ‘Pinot Noir’ wine of the Burgundy region. This offers a complex aroma structure including red flowers, earth and ripe fruits.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry.