terclim by ICS banner
IVES 9 IVES Conference Series 9 BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

Abstract

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.

Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

In this work, we selected four YCW derived from two different yeast genera (Brettanomyces/Dekkera and Saccharomyces) prepared by two processes, autolysis or with a high-pressure homogenizer (HPH). We investigated the effects of both genus and treatment on the capacity of adsorption of CA and EP. The operating parameters affecting adsorption, such as contact time, sorbent dosage, and initial CA and EP concentration, were studied to evaluate their influence on the adsorption capacity. The competition between the two adsorbates on the sorption sites was also investigated.

The adsorbed amounts of CA and EP by the YCW increased as the concentration of the adsorbent increased, regardless of their initial concentration. This might be explained by the increase in active vacant sorption sites and surface area available for the adsorption of CA and EP.

At equilibrium, the specific adsorption capacity of YCW increased when the initial concentration of adsorbate increased. The resistance to mass transfer of the adsorbate between liquid and solid phases is overcome by the driving force, which is determined by the initial concentration of the adsorbate. As the adsorbate’s initial concentration increased, the concentration gradient’s driving force increased, which explains the increase in adsorption.

The specific adsorption capacity decreased when the two adsorbates were together in the medium. First, the adsorption capacity of EP is higher than CA, indicating that EP has specific sites on the YCW that are different from CA. Second, the adsorption capacity is higher when the adsorbate is alone in the medium, implying competition between the two adsorbates. There are probably some common sites for CA and EP on YCW.

 

1. C. S. D. Costa, B. G. M. Queiroz, R. Landers, M. G. C. da Silva, and M. G. A. Vieira, “Equilibrium study of binary mixture biosorption of Cr(III) and Zn(II) by dealginated seaweed waste: Investigation of adsorption mechanisms using X-ray photoelectron spectroscopy analysis,” Environ. Sci. Pollut. Res. Int., vol. 26, pp. 28470–28480, 2019.
2. S. Mor, K. Chhoden, K. Ravindra, and R. Khaiwal, “Application of agro-waste rice husk ash for the removal of phosphate from the wastewater,” J. Clean. Prod., vol. 129, pp. 673–680, 2016.
3. A. B. Albadarin, C. Mangwandi, A. Al-Muhtaseb, G. M. Walker, S. J. Allen, and M. Ahmad, “Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent,” Chem. Eng. J., vol. 179, pp. 193–202, 2012.
4. Senthil Kumar, P., Vincent, C., Kirthika, K., & Sathish Kumar, K., Kinetics and equilibrium studies of Pb2+ ion removal from aqueous solutions by use of nano-silversol-coated activated carbon, Braz. J. Chem. Eng., 2010, 27(2), 339–346.
5. Nandi, B. K., Goswami, A., Das, A. K., Mondal, B., & Purkait, M. K., Kinetic and equilibrium studies on the adsorption of crystal violet dye using Kaolin as an adsorbent. Separation Science and Technology, 2008, 43(6), 1382–1403.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Elena Bakhos1,2,3, Dominique Salameh2, Nathalie Sieczkowski3, Cedric Brandam1

1. Laboratoire de génie chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
2. Université Saint-Joseph de Beyrouth, Faculté des sciences, Mar Roukos, Liban
3. Lallemand SAS, Blagnac, France

Contact the author*

Keywords

4-ethylphenol, biosorption, yeast cell walls, competitive adsorption

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

MODULATION OF YEAST-DERIVED AROMA COMPOUNDS IN CHARDONNAY WINES USING ENCAPSULATED DIAMMONIUM PHOSPHATE TO CONTROL NUTRIENT RELEASE

Yeast-derived aroma compounds are the result of different and complex biochemical pathways that mainly occur during alcoholic fermentation. Many of them are related -but not limited- to the availability of nutrients in the fermentation medium and linked to nitrogen metabolism and biomass produced. Besides, the metabolic phase of yeast also regulates the expression of many enzymes involved in the formation of aroma active compounds. The work investigates the overall effect of continuous supplementation of nutrients during alcoholic fermentation of a grape must on the volatile composition of wines.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.