terclim by ICS banner
IVES 9 IVES Conference Series 9 BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

Abstract

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.

Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

In this work, we selected four YCW derived from two different yeast genera (Brettanomyces/Dekkera and Saccharomyces) prepared by two processes, autolysis or with a high-pressure homogenizer (HPH). We investigated the effects of both genus and treatment on the capacity of adsorption of CA and EP. The operating parameters affecting adsorption, such as contact time, sorbent dosage, and initial CA and EP concentration, were studied to evaluate their influence on the adsorption capacity. The competition between the two adsorbates on the sorption sites was also investigated.

The adsorbed amounts of CA and EP by the YCW increased as the concentration of the adsorbent increased, regardless of their initial concentration. This might be explained by the increase in active vacant sorption sites and surface area available for the adsorption of CA and EP.

At equilibrium, the specific adsorption capacity of YCW increased when the initial concentration of adsorbate increased. The resistance to mass transfer of the adsorbate between liquid and solid phases is overcome by the driving force, which is determined by the initial concentration of the adsorbate. As the adsorbate’s initial concentration increased, the concentration gradient’s driving force increased, which explains the increase in adsorption.

The specific adsorption capacity decreased when the two adsorbates were together in the medium. First, the adsorption capacity of EP is higher than CA, indicating that EP has specific sites on the YCW that are different from CA. Second, the adsorption capacity is higher when the adsorbate is alone in the medium, implying competition between the two adsorbates. There are probably some common sites for CA and EP on YCW.

 

1. C. S. D. Costa, B. G. M. Queiroz, R. Landers, M. G. C. da Silva, and M. G. A. Vieira, “Equilibrium study of binary mixture biosorption of Cr(III) and Zn(II) by dealginated seaweed waste: Investigation of adsorption mechanisms using X-ray photoelectron spectroscopy analysis,” Environ. Sci. Pollut. Res. Int., vol. 26, pp. 28470–28480, 2019.
2. S. Mor, K. Chhoden, K. Ravindra, and R. Khaiwal, “Application of agro-waste rice husk ash for the removal of phosphate from the wastewater,” J. Clean. Prod., vol. 129, pp. 673–680, 2016.
3. A. B. Albadarin, C. Mangwandi, A. Al-Muhtaseb, G. M. Walker, S. J. Allen, and M. Ahmad, “Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent,” Chem. Eng. J., vol. 179, pp. 193–202, 2012.
4. Senthil Kumar, P., Vincent, C., Kirthika, K., & Sathish Kumar, K., Kinetics and equilibrium studies of Pb2+ ion removal from aqueous solutions by use of nano-silversol-coated activated carbon, Braz. J. Chem. Eng., 2010, 27(2), 339–346.
5. Nandi, B. K., Goswami, A., Das, A. K., Mondal, B., & Purkait, M. K., Kinetic and equilibrium studies on the adsorption of crystal violet dye using Kaolin as an adsorbent. Separation Science and Technology, 2008, 43(6), 1382–1403.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Elena Bakhos1,2,3, Dominique Salameh2, Nathalie Sieczkowski3, Cedric Brandam1

1. Laboratoire de génie chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
2. Université Saint-Joseph de Beyrouth, Faculté des sciences, Mar Roukos, Liban
3. Lallemand SAS, Blagnac, France

Contact the author*

Keywords

4-ethylphenol, biosorption, yeast cell walls, competitive adsorption

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected.
Several bitter compounds are already well-described in wines.

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration.

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.