terclim by ICS banner
IVES 9 IVES Conference Series 9 BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

Abstract

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.

Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

In this work, we selected four YCW derived from two different yeast genera (Brettanomyces/Dekkera and Saccharomyces) prepared by two processes, autolysis or with a high-pressure homogenizer (HPH). We investigated the effects of both genus and treatment on the capacity of adsorption of CA and EP. The operating parameters affecting adsorption, such as contact time, sorbent dosage, and initial CA and EP concentration, were studied to evaluate their influence on the adsorption capacity. The competition between the two adsorbates on the sorption sites was also investigated.

The adsorbed amounts of CA and EP by the YCW increased as the concentration of the adsorbent increased, regardless of their initial concentration. This might be explained by the increase in active vacant sorption sites and surface area available for the adsorption of CA and EP.

At equilibrium, the specific adsorption capacity of YCW increased when the initial concentration of adsorbate increased. The resistance to mass transfer of the adsorbate between liquid and solid phases is overcome by the driving force, which is determined by the initial concentration of the adsorbate. As the adsorbate’s initial concentration increased, the concentration gradient’s driving force increased, which explains the increase in adsorption.

The specific adsorption capacity decreased when the two adsorbates were together in the medium. First, the adsorption capacity of EP is higher than CA, indicating that EP has specific sites on the YCW that are different from CA. Second, the adsorption capacity is higher when the adsorbate is alone in the medium, implying competition between the two adsorbates. There are probably some common sites for CA and EP on YCW.

 

1. C. S. D. Costa, B. G. M. Queiroz, R. Landers, M. G. C. da Silva, and M. G. A. Vieira, “Equilibrium study of binary mixture biosorption of Cr(III) and Zn(II) by dealginated seaweed waste: Investigation of adsorption mechanisms using X-ray photoelectron spectroscopy analysis,” Environ. Sci. Pollut. Res. Int., vol. 26, pp. 28470–28480, 2019.
2. S. Mor, K. Chhoden, K. Ravindra, and R. Khaiwal, “Application of agro-waste rice husk ash for the removal of phosphate from the wastewater,” J. Clean. Prod., vol. 129, pp. 673–680, 2016.
3. A. B. Albadarin, C. Mangwandi, A. Al-Muhtaseb, G. M. Walker, S. J. Allen, and M. Ahmad, “Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent,” Chem. Eng. J., vol. 179, pp. 193–202, 2012.
4. Senthil Kumar, P., Vincent, C., Kirthika, K., & Sathish Kumar, K., Kinetics and equilibrium studies of Pb2+ ion removal from aqueous solutions by use of nano-silversol-coated activated carbon, Braz. J. Chem. Eng., 2010, 27(2), 339–346.
5. Nandi, B. K., Goswami, A., Das, A. K., Mondal, B., & Purkait, M. K., Kinetic and equilibrium studies on the adsorption of crystal violet dye using Kaolin as an adsorbent. Separation Science and Technology, 2008, 43(6), 1382–1403.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Elena Bakhos1,2,3, Dominique Salameh2, Nathalie Sieczkowski3, Cedric Brandam1

1. Laboratoire de génie chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
2. Université Saint-Joseph de Beyrouth, Faculté des sciences, Mar Roukos, Liban
3. Lallemand SAS, Blagnac, France

Contact the author*

Keywords

4-ethylphenol, biosorption, yeast cell walls, competitive adsorption

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

EFFECT OF FUMARIC ACID ON SPONTANEOUS FERMENTATION IN GRAPE MUST

Malolactic fermentation (MLF)¹, the decarboxylation of L-malic acid into L-lactic acid, is performed by lactic acid bacteria (LAB). MLF has a deacidifying effect that may compromise freshness or microbiological stability in wines² and can be inhibited by fumaric acid [E297] (FA). In wine, can be added at a maximum allowable dose of 0.6 g/L³. Its inhibition with FA is being studied as an alternative strategy to minimize added doses of SO₂⁴. In addition, wine yeasts are capable of metabolizing and storing small amounts of FA and during alcoholic fermentation (AF).

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.