terclim by ICS banner
IVES 9 IVES Conference Series 9 HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Abstract

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations. However, these methods are complex, expensive and time consuming, thus not affordable for most small winery. Consequently, the development of several techniques that are faster, cheaper and user-friendly are currently of great interest. Among these, voltammetry has shown to be able to discriminate well wines according to their chemical composition, in particular in relationship to phenolic compounds. Aims: Our work aimed to understand the effect of oxygenation on voltammetric signals of wines. Material and Methods: DIfferent commercial red wines purchased from a local stores have been used in this study. The experimental protocol involved oxygenation of the wines in a 1 L bottle by hand shaking until the desired oxygen level was reached. Three level of oxygenation were chosen: 1.5 (TA), 5 (TB) and 7 mg/L O₂ (TC). Measures of oxygen have been carried out with a portable oximeter. The oxygenated wine was placed in 125 ml glass vials fitted with an oxygen sensor, filled without leaving any headspace and closed with sealing wax in order to not have oxygen exchanges with the outside. Electrochimical measurements were performed with a with a potentiostat using disposable screen- printed sensors in a three-electrode arrangement. Total polyphenols, anthocyanins, free and total SO₂ measurements were carried out using a multiparametric analyser and the dedicated kit. For colour de- termination were measured the absorbances at wavelengths 420, 520 and 620. The measures to determine the oxygen kinetic consumption were performed every 24 for hours. At the same time were carried out analysis with the multiparametric analyser and for colour determination. Results: Red wine voltammograms were impacted by oxygenation, with several voltametric features showing variation in profile and peak intensity according to the level of oxygen consumption. Different signal treatments strategies were applied to highlight the regions of the voltammograms mostly affected by oxidation, in particular through the use of derivative voltammetry.

 

1. Makhotkina, O., & Kilmartin, P. A. (2009). Uncovering the influence of antioxidants on polyphenol oxidation in wines using an electrochemical method: Cyclic voltammetry. Journal of Electroanalytical Chemistry, 633(1), 165-174
2. Ugliano, M., Slaghenaufi, D., Picariello, L., & Olivieri, G. (2020). Oxygen and SO₂ consumption of different enological tannins in relationship to their chemical and electrochemical characteristics. Journal of Agricultural and Food Chemistry, 68(47), 13418-13425.
3. Ferreira, C., Sáenz-Navajas, M. P., Carrascón, V., Næs, T., Fernández-Zurbano, P., & Ferreira, V. (2021). An assessment of voltammetry on disposable screen printed electrodes to predict wine chemical composition and oxygen consumption rates. Food Chemistry, 365, 130405.
4. P. A. Kilmartin, Electrochemistry applied to the analysis of wine: A mini-review, Electrochemistry Communications, 2016, 67, 39-42 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rosario Pascale, Leonardo Vanzo, Giacomi Cristanelli, Maurizio Uglian

Department of Biotechnology, University of Verona, 37134 Verona, Italy

Contact the author*

Keywords

Red wine, Oxygen, Phenolic compounds, Voltammetry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.