terclim by ICS banner
IVES 9 IVES Conference Series 9 HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Abstract

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations. However, these methods are complex, expensive and time consuming, thus not affordable for most small winery. Consequently, the development of several techniques that are faster, cheaper and user-friendly are currently of great interest. Among these, voltammetry has shown to be able to discriminate well wines according to their chemical composition, in particular in relationship to phenolic compounds. Aims: Our work aimed to understand the effect of oxygenation on voltammetric signals of wines. Material and Methods: DIfferent commercial red wines purchased from a local stores have been used in this study. The experimental protocol involved oxygenation of the wines in a 1 L bottle by hand shaking until the desired oxygen level was reached. Three level of oxygenation were chosen: 1.5 (TA), 5 (TB) and 7 mg/L O₂ (TC). Measures of oxygen have been carried out with a portable oximeter. The oxygenated wine was placed in 125 ml glass vials fitted with an oxygen sensor, filled without leaving any headspace and closed with sealing wax in order to not have oxygen exchanges with the outside. Electrochimical measurements were performed with a with a potentiostat using disposable screen- printed sensors in a three-electrode arrangement. Total polyphenols, anthocyanins, free and total SO₂ measurements were carried out using a multiparametric analyser and the dedicated kit. For colour de- termination were measured the absorbances at wavelengths 420, 520 and 620. The measures to determine the oxygen kinetic consumption were performed every 24 for hours. At the same time were carried out analysis with the multiparametric analyser and for colour determination. Results: Red wine voltammograms were impacted by oxygenation, with several voltametric features showing variation in profile and peak intensity according to the level of oxygen consumption. Different signal treatments strategies were applied to highlight the regions of the voltammograms mostly affected by oxidation, in particular through the use of derivative voltammetry.

 

1. Makhotkina, O., & Kilmartin, P. A. (2009). Uncovering the influence of antioxidants on polyphenol oxidation in wines using an electrochemical method: Cyclic voltammetry. Journal of Electroanalytical Chemistry, 633(1), 165-174
2. Ugliano, M., Slaghenaufi, D., Picariello, L., & Olivieri, G. (2020). Oxygen and SO₂ consumption of different enological tannins in relationship to their chemical and electrochemical characteristics. Journal of Agricultural and Food Chemistry, 68(47), 13418-13425.
3. Ferreira, C., Sáenz-Navajas, M. P., Carrascón, V., Næs, T., Fernández-Zurbano, P., & Ferreira, V. (2021). An assessment of voltammetry on disposable screen printed electrodes to predict wine chemical composition and oxygen consumption rates. Food Chemistry, 365, 130405.
4. P. A. Kilmartin, Electrochemistry applied to the analysis of wine: A mini-review, Electrochemistry Communications, 2016, 67, 39-42 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rosario Pascale, Leonardo Vanzo, Giacomi Cristanelli, Maurizio Uglian

Department of Biotechnology, University of Verona, 37134 Verona, Italy

Contact the author*

Keywords

Red wine, Oxygen, Phenolic compounds, Voltammetry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.