terclim by ICS banner
IVES 9 IVES Conference Series 9 HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Abstract

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations. However, these methods are complex, expensive and time consuming, thus not affordable for most small winery. Consequently, the development of several techniques that are faster, cheaper and user-friendly are currently of great interest. Among these, voltammetry has shown to be able to discriminate well wines according to their chemical composition, in particular in relationship to phenolic compounds. Aims: Our work aimed to understand the effect of oxygenation on voltammetric signals of wines. Material and Methods: DIfferent commercial red wines purchased from a local stores have been used in this study. The experimental protocol involved oxygenation of the wines in a 1 L bottle by hand shaking until the desired oxygen level was reached. Three level of oxygenation were chosen: 1.5 (TA), 5 (TB) and 7 mg/L O₂ (TC). Measures of oxygen have been carried out with a portable oximeter. The oxygenated wine was placed in 125 ml glass vials fitted with an oxygen sensor, filled without leaving any headspace and closed with sealing wax in order to not have oxygen exchanges with the outside. Electrochimical measurements were performed with a with a potentiostat using disposable screen- printed sensors in a three-electrode arrangement. Total polyphenols, anthocyanins, free and total SO₂ measurements were carried out using a multiparametric analyser and the dedicated kit. For colour de- termination were measured the absorbances at wavelengths 420, 520 and 620. The measures to determine the oxygen kinetic consumption were performed every 24 for hours. At the same time were carried out analysis with the multiparametric analyser and for colour determination. Results: Red wine voltammograms were impacted by oxygenation, with several voltametric features showing variation in profile and peak intensity according to the level of oxygen consumption. Different signal treatments strategies were applied to highlight the regions of the voltammograms mostly affected by oxidation, in particular through the use of derivative voltammetry.

 

1. Makhotkina, O., & Kilmartin, P. A. (2009). Uncovering the influence of antioxidants on polyphenol oxidation in wines using an electrochemical method: Cyclic voltammetry. Journal of Electroanalytical Chemistry, 633(1), 165-174
2. Ugliano, M., Slaghenaufi, D., Picariello, L., & Olivieri, G. (2020). Oxygen and SO₂ consumption of different enological tannins in relationship to their chemical and electrochemical characteristics. Journal of Agricultural and Food Chemistry, 68(47), 13418-13425.
3. Ferreira, C., Sáenz-Navajas, M. P., Carrascón, V., Næs, T., Fernández-Zurbano, P., & Ferreira, V. (2021). An assessment of voltammetry on disposable screen printed electrodes to predict wine chemical composition and oxygen consumption rates. Food Chemistry, 365, 130405.
4. P. A. Kilmartin, Electrochemistry applied to the analysis of wine: A mini-review, Electrochemistry Communications, 2016, 67, 39-42 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rosario Pascale, Leonardo Vanzo, Giacomi Cristanelli, Maurizio Uglian

Department of Biotechnology, University of Verona, 37134 Verona, Italy

Contact the author*

Keywords

Red wine, Oxygen, Phenolic compounds, Voltammetry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed.

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.