terclim by ICS banner
IVES 9 IVES Conference Series 9 HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Abstract

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations. However, these methods are complex, expensive and time consuming, thus not affordable for most small winery. Consequently, the development of several techniques that are faster, cheaper and user-friendly are currently of great interest. Among these, voltammetry has shown to be able to discriminate well wines according to their chemical composition, in particular in relationship to phenolic compounds. Aims: Our work aimed to understand the effect of oxygenation on voltammetric signals of wines. Material and Methods: DIfferent commercial red wines purchased from a local stores have been used in this study. The experimental protocol involved oxygenation of the wines in a 1 L bottle by hand shaking until the desired oxygen level was reached. Three level of oxygenation were chosen: 1.5 (TA), 5 (TB) and 7 mg/L O₂ (TC). Measures of oxygen have been carried out with a portable oximeter. The oxygenated wine was placed in 125 ml glass vials fitted with an oxygen sensor, filled without leaving any headspace and closed with sealing wax in order to not have oxygen exchanges with the outside. Electrochimical measurements were performed with a with a potentiostat using disposable screen- printed sensors in a three-electrode arrangement. Total polyphenols, anthocyanins, free and total SO₂ measurements were carried out using a multiparametric analyser and the dedicated kit. For colour de- termination were measured the absorbances at wavelengths 420, 520 and 620. The measures to determine the oxygen kinetic consumption were performed every 24 for hours. At the same time were carried out analysis with the multiparametric analyser and for colour determination. Results: Red wine voltammograms were impacted by oxygenation, with several voltametric features showing variation in profile and peak intensity according to the level of oxygen consumption. Different signal treatments strategies were applied to highlight the regions of the voltammograms mostly affected by oxidation, in particular through the use of derivative voltammetry.

 

1. Makhotkina, O., & Kilmartin, P. A. (2009). Uncovering the influence of antioxidants on polyphenol oxidation in wines using an electrochemical method: Cyclic voltammetry. Journal of Electroanalytical Chemistry, 633(1), 165-174
2. Ugliano, M., Slaghenaufi, D., Picariello, L., & Olivieri, G. (2020). Oxygen and SO₂ consumption of different enological tannins in relationship to their chemical and electrochemical characteristics. Journal of Agricultural and Food Chemistry, 68(47), 13418-13425.
3. Ferreira, C., Sáenz-Navajas, M. P., Carrascón, V., Næs, T., Fernández-Zurbano, P., & Ferreira, V. (2021). An assessment of voltammetry on disposable screen printed electrodes to predict wine chemical composition and oxygen consumption rates. Food Chemistry, 365, 130405.
4. P. A. Kilmartin, Electrochemistry applied to the analysis of wine: A mini-review, Electrochemistry Communications, 2016, 67, 39-42 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rosario Pascale, Leonardo Vanzo, Giacomi Cristanelli, Maurizio Uglian

Department of Biotechnology, University of Verona, 37134 Verona, Italy

Contact the author*

Keywords

Red wine, Oxygen, Phenolic compounds, Voltammetry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].

EFFECT OF OXIDATION ON LOW MOLECULAR WEIGHT PHENOLIC FRACTION, SALIVARY PROTEINS PRECIPITATION AND ASTRINGENCY SUBQUALITIES OF RED WINES

Changes in the low molecular weight phenolic fraction, obtained by liquid-liquid microextraction technique, were studied after controlled oxidation of two typologies of Sangiovese wines (Brunello di Montalcino and Chianti Classico) belonging to two vintages (2017 and 2018). The fractions were characterized by LC-MS and quantified by HPLC. The most abundant extracted compounds were the phenolic acids. The effect of oxidation, vintage, and wine typology was stated by a three-ways ANOVA. Gallic and syringic acids significantly increased after oxidation while (–)-epicatechin decreased the most.

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.