terclim by ICS banner
IVES 9 IVES Conference Series 9 HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Abstract

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations. However, these methods are complex, expensive and time consuming, thus not affordable for most small winery. Consequently, the development of several techniques that are faster, cheaper and user-friendly are currently of great interest. Among these, voltammetry has shown to be able to discriminate well wines according to their chemical composition, in particular in relationship to phenolic compounds. Aims: Our work aimed to understand the effect of oxygenation on voltammetric signals of wines. Material and Methods: DIfferent commercial red wines purchased from a local stores have been used in this study. The experimental protocol involved oxygenation of the wines in a 1 L bottle by hand shaking until the desired oxygen level was reached. Three level of oxygenation were chosen: 1.5 (TA), 5 (TB) and 7 mg/L O₂ (TC). Measures of oxygen have been carried out with a portable oximeter. The oxygenated wine was placed in 125 ml glass vials fitted with an oxygen sensor, filled without leaving any headspace and closed with sealing wax in order to not have oxygen exchanges with the outside. Electrochimical measurements were performed with a with a potentiostat using disposable screen- printed sensors in a three-electrode arrangement. Total polyphenols, anthocyanins, free and total SO₂ measurements were carried out using a multiparametric analyser and the dedicated kit. For colour de- termination were measured the absorbances at wavelengths 420, 520 and 620. The measures to determine the oxygen kinetic consumption were performed every 24 for hours. At the same time were carried out analysis with the multiparametric analyser and for colour determination. Results: Red wine voltammograms were impacted by oxygenation, with several voltametric features showing variation in profile and peak intensity according to the level of oxygen consumption. Different signal treatments strategies were applied to highlight the regions of the voltammograms mostly affected by oxidation, in particular through the use of derivative voltammetry.

 

1. Makhotkina, O., & Kilmartin, P. A. (2009). Uncovering the influence of antioxidants on polyphenol oxidation in wines using an electrochemical method: Cyclic voltammetry. Journal of Electroanalytical Chemistry, 633(1), 165-174
2. Ugliano, M., Slaghenaufi, D., Picariello, L., & Olivieri, G. (2020). Oxygen and SO₂ consumption of different enological tannins in relationship to their chemical and electrochemical characteristics. Journal of Agricultural and Food Chemistry, 68(47), 13418-13425.
3. Ferreira, C., Sáenz-Navajas, M. P., Carrascón, V., Næs, T., Fernández-Zurbano, P., & Ferreira, V. (2021). An assessment of voltammetry on disposable screen printed electrodes to predict wine chemical composition and oxygen consumption rates. Food Chemistry, 365, 130405.
4. P. A. Kilmartin, Electrochemistry applied to the analysis of wine: A mini-review, Electrochemistry Communications, 2016, 67, 39-42 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Rosario Pascale, Leonardo Vanzo, Giacomi Cristanelli, Maurizio Uglian

Department of Biotechnology, University of Verona, 37134 Verona, Italy

Contact the author*

Keywords

Red wine, Oxygen, Phenolic compounds, Voltammetry

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

HYBRID GRAPEVINE CV BACO BLANC, BETWEEN TRADITION AND MODERNISM: FOCUS ON ENDOGENOUS EUGENOL AS RESISTANCE FACTOR TO BOTRYTIS CINEREA

The well-known antifungal and antibiotic molecule, eugenol, is widely spread in various plants including clove, basil and bay. It is also abundant in the hybrid grapevine cultivar (cv) Baco blanc (Vitis vi-nifera x Vitis riparia x Vitis labrusca), created by François Baco (19th century) in the Armagnac region. This study confirmed this cv as highly resistant to Botrytis cinerea by comparing fruit rot incidence and severity with two Vitis vinifera cultivars: Folle Blanche and Ugni Blanc. We have demonstrated the efficiency of eugenol in vitro, by further investigating the effect of small concentrations of eugenol, 3 to 4 ppm (corresponding to IC10), on B. cinerea. By comparing the two major modes of action (direct or volatile antibiosis), the vapour inhibiting effect of eugenol was more powerful. In the skin of Baco blanc berry, the total eugenol concentration reached a maximum at veraison, i.e. 1118 to 1478 μg/kg.

INOCULATION OF THE SELECTED METSCHNIKOWIA PULCHERRIMA MP1 AS A BIOPROTECTIVE ALTERNATIVE TO SULFITES TO PREVENT BROWNING OF WHITE GRAPE MUST

Enzymatic browning (BE) of must is caused by polyphenol oxidases (PPOs), tyrosinase and laccase. Both PPOs can oxidize diphenols such as hydroxycinnamic acids (HA) to quinones, which can later polymerize to form melanins [1], which are responsible of BE in white wines and of oxidasic haze in red wines. SO₂ is the main tool used to protect must from BE thanks to its capacity to inhibit PPOs [2]. However, the current trend in winemaking is to reduce and even eliminate this unfriendly additive. Among the different possible alternatives for protecting must against BE, the inoculation with a selected Metschnikowia pulcherrima MP1 is without any doubt one of the most promising ones.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.