terclim by ICS banner
IVES 9 IVES Conference Series 9 THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Abstract

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinkish-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired. Thus, the aim of this work is to assess the effect of the addition of soluble polysaccharides, issued from grape pomace on the oxidation process. To do this, rosé wines were made using grapes from V. vinifera cv Syrah and employing two different maceration times: short (S, 10 min) and long (L, 2 hours).

Thus, two different wines were elaborated (SYS and SYL). Soluble polysaccharides were extracted, purified and characterized (by means of HPLC-DAD-MS and HPLC-RID) from white grape pomace and added to the rosé wines. Then, wines were submitted to an oxidation process by reaching oxygen saturation level in the solution. Wines’ phenolic composition was studied before the oxidation process and then its evolution was monitored.

The extract of polysaccharides presented three main fractions: F1 (25%) with a MW of 104 kDa; F2 (13%) with a MW of 8 kDa and F3 (62%) with a MW of 2 kDa. The polysaccharide extract was analysed by HPLC-DAD-MS after acid hydrolysis and a chemical modification reaction, in order to obtain a derivative of the monosaccharide which could be detected by UV. The main constitutive monosaccharide units detected were: galacturonic acid (26.3%), arabinose (26.2%), galactose (16%), xylose (11.4%), glucose (9.0%), mannose (6.6%), rhamnose (3.2%) and glucuronic acid (1.3%).

Two antioxidant test (FRAP and ABTS) were performed on the polysaccharide extract for the purpose of measuring its potential use as an antioxidant. Phenolic composition was analysed by HPLC-DAD-MS during the duration of the study (60 days).

Results allowed us to assess the importance of polysaccharide addition to modify the ability of rosé wines to resist oxidation, evaluating the possible application of a natural polysaccharide obtained from wine’s by-product as an oenological adjuvant.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Puerta-García, Ivan. Dueñas, Montserrat. García-Estévez, Ignacio. Salas, Erika. Escribano-Bailón, Maria-Teresa

Contact the author*

Keywords

rosé wine, polysaccharide, oxidation, phenolic compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

BORDEAUX RED WINES WITHOUT ADDED SULFITES SPECIFICITIES: COMPOSITIONAL AND SENSORY APPROACHES TOWARDS HIGHLIGHTING AND EXPLAI-NING THEIR SPECIFIC FRUITINESS AND COOLNESS

With the development of naturality expectations, wines produced without any addition of sulfur dioxide (SO₂) become very popular for consumers and such wines are increasingly present on the market. Recent studies also showed that Bordeaux red wines without added SO₂ could be differentiated from a sensory point of view from similar wines produced with SO₂¹. Thus, the aim of the current study was to characterize from a sensory point of view, specific aromas of wines without added SO₂ and to identify compounds involved.

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).