terclim by ICS banner
IVES 9 IVES Conference Series 9 THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Abstract

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinkish-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired. Thus, the aim of this work is to assess the effect of the addition of soluble polysaccharides, issued from grape pomace on the oxidation process. To do this, rosé wines were made using grapes from V. vinifera cv Syrah and employing two different maceration times: short (S, 10 min) and long (L, 2 hours).

Thus, two different wines were elaborated (SYS and SYL). Soluble polysaccharides were extracted, purified and characterized (by means of HPLC-DAD-MS and HPLC-RID) from white grape pomace and added to the rosé wines. Then, wines were submitted to an oxidation process by reaching oxygen saturation level in the solution. Wines’ phenolic composition was studied before the oxidation process and then its evolution was monitored.

The extract of polysaccharides presented three main fractions: F1 (25%) with a MW of 104 kDa; F2 (13%) with a MW of 8 kDa and F3 (62%) with a MW of 2 kDa. The polysaccharide extract was analysed by HPLC-DAD-MS after acid hydrolysis and a chemical modification reaction, in order to obtain a derivative of the monosaccharide which could be detected by UV. The main constitutive monosaccharide units detected were: galacturonic acid (26.3%), arabinose (26.2%), galactose (16%), xylose (11.4%), glucose (9.0%), mannose (6.6%), rhamnose (3.2%) and glucuronic acid (1.3%).

Two antioxidant test (FRAP and ABTS) were performed on the polysaccharide extract for the purpose of measuring its potential use as an antioxidant. Phenolic composition was analysed by HPLC-DAD-MS during the duration of the study (60 days).

Results allowed us to assess the importance of polysaccharide addition to modify the ability of rosé wines to resist oxidation, evaluating the possible application of a natural polysaccharide obtained from wine’s by-product as an oenological adjuvant.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Puerta-García, Ivan. Dueñas, Montserrat. García-Estévez, Ignacio. Salas, Erika. Escribano-Bailón, Maria-Teresa

Contact the author*

Keywords

rosé wine, polysaccharide, oxidation, phenolic compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

NEW TOOL FOR SIMULTANEOUS MEASUREMENT OF OXYGEN CONSUMPTION AND COLOUR MODIFICATIONS IN WINES

Measuring the effect of oxygen consumption on the colour of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine is able to consume without significantly altering its colour. The changes produced in wine after being exposed to high oxygen concen-trations have been studied by different authors, but in all cases the wine has been analysed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.
Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.