terclim by ICS banner
IVES 9 IVES Conference Series 9 UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

Abstract

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid identified in grapes (2), which can be metabolized by yeast during alcoholic fermentation. As a consequence, the totality of DMSp is not released into a young wine (3). Previous studies show that DMS and DMSp are effective as quality indicators for Champagne wines.

However, in beer, dimethyl sulphide (DMS) is either the result of the reduction of dimethylsulfoxide (DMSO) or the hydrolysis of DMSp, and is also linked with the fermentative process (4). Our current question: is the DMS present in wines liberated exclusively from DMSp of vegetal origin – i.e., produced by the vines – or do yeast likewise contribute DMSp during fermentation?

That question is particularly important in the case of Champagne wines because of the double fermentation required for its production. As part of an ongoing study of these Champagne base wines, lies production using Saccharomyces cerevisiae in both grape must and model solutions were standardized at a laboratory level. Modalities omitting DMSp and DMS in the original solution allowed us to monitor the appearance of DMSp during and post-fermentation. While the yeast in these modalities did not initially produce DMS, concentrations of DMSp rose from the onset of fermentation. Further analysis showed this onset coincided with a dramatic drop in methionine concentrations in the fermenting must. While the precise correlation is still being determined, these initial results showed DMSp can originate in both the vineyard and from yeast activity during fermentation, and implies that it may be possible to improve aging quality production using oenological techniques.

 

1. Picard M, Thibon C, Redon P, Darriet P, De Revel G, Marchand S. Involvement of Dimethyl Sulfide and Several Polyfunctional Thiols in the Aromatic Expression of the Aging Bouquet of Red Bordeaux Wines. Journal of Agricultural and Food Chemistry. 2015;63(40):8879-89.
2. Segurel MA, Razungles AJ, Riou C, Trigueiro MGL, Baumes RL. Ability of Possible DMS Precursors To Release DMS during Wine Aging and in the Conditions of Heat-Alkaline Treatment. J Agric Food Chem. 1 avr 2005;53(7):2637-45.
3. Dagan L. Potentiel aromatique des raisins de Vitis vinifera L. Cv. Petit Manseng et Gros Manseng. Contribution à l’arôme des vins de pays Côtes de Gascogne [thesis]. École nationale supérieure agronomique (Montpellier); 2006.
4. Klie R, Biermann M, Kreuschner P, Hutzler M, Methner FJ. On the Behaviour of Dimethyl Sulfoxide in the Brewing Process and its Role as Dimethyl Sulfide Precursor in Beer. BrewingScience. 28 févr 2018;(volume 71):01-11. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sera Goto; Laurent Riquier; Stephanie Marchand

Université de Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France

Contact the author*

Keywords

dimethyl sulfide, fermentation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

IMPACT OF MINERAL AND ORGANIC NITROGEN ADDITION ON ALCOHOLIC FERMENTATION WITH S. CEREVISIAE

During alcoholic fermentation, nitrogen is one of essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of and wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (YAN) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species and leads to economic losses. Currently, grape musts are often characterized by low YAN concentration and an increase of sugars concentration due to global warming, making alcoholic fermentations even more difficult. YAN depletion can be corrected by addition of inorganic (ammonia) or organic (yeast derivatives products) nitrogen during alcoholic fermentation.

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.