terclim by ICS banner
IVES 9 IVES Conference Series 9 UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

Abstract

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid identified in grapes (2), which can be metabolized by yeast during alcoholic fermentation. As a consequence, the totality of DMSp is not released into a young wine (3). Previous studies show that DMS and DMSp are effective as quality indicators for Champagne wines.

However, in beer, dimethyl sulphide (DMS) is either the result of the reduction of dimethylsulfoxide (DMSO) or the hydrolysis of DMSp, and is also linked with the fermentative process (4). Our current question: is the DMS present in wines liberated exclusively from DMSp of vegetal origin – i.e., produced by the vines – or do yeast likewise contribute DMSp during fermentation?

That question is particularly important in the case of Champagne wines because of the double fermentation required for its production. As part of an ongoing study of these Champagne base wines, lies production using Saccharomyces cerevisiae in both grape must and model solutions were standardized at a laboratory level. Modalities omitting DMSp and DMS in the original solution allowed us to monitor the appearance of DMSp during and post-fermentation. While the yeast in these modalities did not initially produce DMS, concentrations of DMSp rose from the onset of fermentation. Further analysis showed this onset coincided with a dramatic drop in methionine concentrations in the fermenting must. While the precise correlation is still being determined, these initial results showed DMSp can originate in both the vineyard and from yeast activity during fermentation, and implies that it may be possible to improve aging quality production using oenological techniques.

 

1. Picard M, Thibon C, Redon P, Darriet P, De Revel G, Marchand S. Involvement of Dimethyl Sulfide and Several Polyfunctional Thiols in the Aromatic Expression of the Aging Bouquet of Red Bordeaux Wines. Journal of Agricultural and Food Chemistry. 2015;63(40):8879-89.
2. Segurel MA, Razungles AJ, Riou C, Trigueiro MGL, Baumes RL. Ability of Possible DMS Precursors To Release DMS during Wine Aging and in the Conditions of Heat-Alkaline Treatment. J Agric Food Chem. 1 avr 2005;53(7):2637-45.
3. Dagan L. Potentiel aromatique des raisins de Vitis vinifera L. Cv. Petit Manseng et Gros Manseng. Contribution à l’arôme des vins de pays Côtes de Gascogne [thesis]. École nationale supérieure agronomique (Montpellier); 2006.
4. Klie R, Biermann M, Kreuschner P, Hutzler M, Methner FJ. On the Behaviour of Dimethyl Sulfoxide in the Brewing Process and its Role as Dimethyl Sulfide Precursor in Beer. BrewingScience. 28 févr 2018;(volume 71):01-11. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sera Goto; Laurent Riquier; Stephanie Marchand

Université de Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France

Contact the author*

Keywords

dimethyl sulfide, fermentation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.