terclim by ICS banner
IVES 9 IVES Conference Series 9 UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

Abstract

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid identified in grapes (2), which can be metabolized by yeast during alcoholic fermentation. As a consequence, the totality of DMSp is not released into a young wine (3). Previous studies show that DMS and DMSp are effective as quality indicators for Champagne wines.

However, in beer, dimethyl sulphide (DMS) is either the result of the reduction of dimethylsulfoxide (DMSO) or the hydrolysis of DMSp, and is also linked with the fermentative process (4). Our current question: is the DMS present in wines liberated exclusively from DMSp of vegetal origin – i.e., produced by the vines – or do yeast likewise contribute DMSp during fermentation?

That question is particularly important in the case of Champagne wines because of the double fermentation required for its production. As part of an ongoing study of these Champagne base wines, lies production using Saccharomyces cerevisiae in both grape must and model solutions were standardized at a laboratory level. Modalities omitting DMSp and DMS in the original solution allowed us to monitor the appearance of DMSp during and post-fermentation. While the yeast in these modalities did not initially produce DMS, concentrations of DMSp rose from the onset of fermentation. Further analysis showed this onset coincided with a dramatic drop in methionine concentrations in the fermenting must. While the precise correlation is still being determined, these initial results showed DMSp can originate in both the vineyard and from yeast activity during fermentation, and implies that it may be possible to improve aging quality production using oenological techniques.

 

1. Picard M, Thibon C, Redon P, Darriet P, De Revel G, Marchand S. Involvement of Dimethyl Sulfide and Several Polyfunctional Thiols in the Aromatic Expression of the Aging Bouquet of Red Bordeaux Wines. Journal of Agricultural and Food Chemistry. 2015;63(40):8879-89.
2. Segurel MA, Razungles AJ, Riou C, Trigueiro MGL, Baumes RL. Ability of Possible DMS Precursors To Release DMS during Wine Aging and in the Conditions of Heat-Alkaline Treatment. J Agric Food Chem. 1 avr 2005;53(7):2637-45.
3. Dagan L. Potentiel aromatique des raisins de Vitis vinifera L. Cv. Petit Manseng et Gros Manseng. Contribution à l’arôme des vins de pays Côtes de Gascogne [thesis]. École nationale supérieure agronomique (Montpellier); 2006.
4. Klie R, Biermann M, Kreuschner P, Hutzler M, Methner FJ. On the Behaviour of Dimethyl Sulfoxide in the Brewing Process and its Role as Dimethyl Sulfide Precursor in Beer. BrewingScience. 28 févr 2018;(volume 71):01-11. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Sera Goto; Laurent Riquier; Stephanie Marchand

Université de Bordeaux, ISVV, EA 4577, INRA, USC 1366 OENOLOGIE, 33140 Villenave d’Ornon, France

Contact the author*

Keywords

dimethyl sulfide, fermentation

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.