terclim by ICS banner
IVES 9 IVES Conference Series 9 HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Abstract

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ultrasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2. Nonetheless, the method is considered to have potential for optimising wine ageing3,4. Ultrasound treatment was carried out on sealed bottles of Buttafuoco red wine using an ultrasonic cleaning bath with 6oo W power at 40 kHz. Both short (5 min) and long (30 min) treatments were conducted twice weekly. Four break points were defined at 3, 6, 9, and 12 months, when chemical and sensory analyses were conducted. For profiling of wines, GC×GC-MS, LC-MS, CIELab, spectrophotometry, and multiparametric analyses were undertaken. For sensory analysis, the Triangle Test was undertaken at T3, and Qualitative Descriptive Analyses at T6, T9, and T12. Results have shown clear differentiation between the treatments in chemical composition, due to the duration of the treatment applied via ultrasound. This has also influenced basic parameters such as tartaric acid and sulfur dioxide levels. The overall pattern is complicated as non-linear effects were observed for specific species in relation to long and short treatments. Some compounds displayed a decrease for the short treatment with respect to the control (no treatment), but then showed an increase at long treatments with respect to the short treatments. In addition, the chemical compositions of all wines were also influenced by ageing over the time period. For example, acetic acid decreased with ageing but did not differ between treatments. Colour was also affected by ageing but not by treatment. The sensory results have not shown clear trends based on treatments, with the short treatments appearing to be somewhat distinctive, but with the long and control treatments clustering. Sensory results were also clearly influenced by ageing. It is suggested that ultrasound treatment has a potential application for accelerated ageing of commercial wines ahead of release to market. However, further study is recommended to gauge consumer preferences regarding the extent of treatment applied.

 

1. OIV. Resolution OIV-OENO 616-2019: Treatment of Crushed Grapes with Ultrasound to Promote the Extraction of their Compounds. (2019).
2. Ferraretto, P., Cacciola, V., Batllo, I. F. & Celotti, E. Ultrasounds application in winemaking: grape maceration and yeast lysis. Italian Journal of Food Science 25, (2013).
3. García Martín, J. F. & Sun, D.-W. Ultrasound and electric fields as novel techniques for assisting the wine ageing process: The state-of-the-art research. Trends in Food Science & Technology 33, 40–53 (2013).
4. Poggesi, S., Merkytė, V., Longo, E. & Boselli, E. Effects of Microvibrations and Their Damping on the Evolution of Pinot Noir Wine during Bottle Storage. Foods 11, 2761 (2022)

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Gavin Duley1,2,*,†, Lorenzo Longhi1,2, Simone Poggesi1,2,3, Edoardo Longo1,2, Emanuele Boselli1,2

1. Oenolab, NOI TechPark Alto Adige/Südtirol, Via A. Volta 13B, 39100 Bolzano, Italy
2. Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
3. Food Experience and Sensory Testing (FEAST) Lab, School of Food and Advanced Technology, Massey University, Pal-merston North 4410, New Zealand 

Corresponding author. Email:
† Presenting author

Contact the author*

Keywords

Ultrasound, Wine ageing, Chemical profile, Sensory analysis

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.