terclim by ICS banner
IVES 9 IVES Conference Series 9 EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Abstract

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Celotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine. In model wine, neither temperature nor sonication affected TLPs concentration, suggesting their unfolding reversibility. However, the presence of AP-I during US treatment reduced protein concentration, up to complete removal under the most powerful conditions. In wine, the temperature effect was enough to lower chitinase levels (~48% and ~54% reduction at 40°C and 70°C, respectively) but had an undetectable effect on TLPs level. US significantly reduced both protein families, being more effective on chitinases (52% and 69% reduction at 20 s and 60 s, respectively) than TLPs (~11%) with the most powerful treatment. Interestingly, US was more successful than heating on chitinase (32%) and TLPs (15%) removal at the most energetic conditions. The supplement of AP-I combined with heating or US further reduced protein concentration. For heat treatment, both proteins were affected at both temperature conditions (TLPs: ~25% and ~23%; chitinases: ~58% and ~46%), while AP-I combined with US only affected TLPs under the most energetic treatment (~18%). The study found that US can affect unstable grape proteins and has additional mechanisms beyond sonication-induced temperature increase. When combined with AP-I, it further reduces unstable proteins, and suggests interaction between the US and AP-I. Further investigation is required to determine if US treatment destabilises proteins through a mechanism distinct from temperature increase, considering other factors affecting protein stability in winemaking conditions.

 

1. Celotti, E., Barahona, M. S. O., Bellantuono, E., Cardona, J., Roman, T., Nicolini, G., & Natolino, A. (2021). High-power ultrasound on the protein stability of white wines: Preliminary study of amplitude and sonication time. LWT, 147, 111602

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Adelaide Gallo1,2, Tomas Roman¹, Andrea Natolino³, Andrea Curioni4,5, Matteo Marangon4,5, Emilio Celotti³

1. Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38050 San Michele all’ Adige, Italy
2. C3A – Università degli Studi di Trento, Via Mach, 1, 38010 San Michele all’Adige, Italy
3. Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
4. Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell’Uni-versità, 16, 35020 Legnaro, Italy
5. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, 31015 Conegliano, Italy

Contact the author*

Keywords

Ultrasound, Aspergillopepsins I, TLPs, Protein stability

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EVALUATION OF INDIGENOUS SACCHAROMYCES CEREVISIAE ISOLATES FOR THEIR POTENTIAL USE AS FERMENTATION STARTERS IN ASSYRTIKO WINE

Assyrtiko is a rare ancient grape variety that constitutes one of the most popular in Greece. The objective of the current research was to evaluate indigenous Saccharomyces cerevisiae isolates as fermentation starters and also test the possible strain impact on volatile profile of Assyrtiko wine. 163 S. cerevisiae isolates, which were previously selected from spontaneous alcoholic fermentation, were identified at strain level by interdelta-PCR genomic fingerprinting. Yeasts strains were examined for their fermentative capacity in laboratory scale fermentation on pasteurized Assyrtiko grape must.

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

UNRAVELING THE CHEMICAL MECHANISM OF MND FORMATION IN RED WINE DURING BOTTLE AGING : IDENTIFICATION OF A NEW GLUCOSYLATED HYDROXYKETONE PRO-PRECURSOR

During bottle aging, the development of wine aroma through low and gradual oxygen exposure is often positive in red wines, but can be unfavorable in many cases, resulting in a rapid loss of fresh, fruity flavors. Prematurely aged wines are marked by intense prune and fig aromatic nuances that dominate the desirable bouquet achieved through aging (Pons et al., 2013). This aromatic defect, in part, is caused by the presence of 3-methyl-2,4-nonanedione (MND). MND content was shown to be lower in nonoxidized red wines and higher in oxidized red wines, which systematically exceeds the odor detection threshold (62 ng/L).

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay.