terclim by ICS banner
IVES 9 IVES Conference Series 9 EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Abstract

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Celotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine. In model wine, neither temperature nor sonication affected TLPs concentration, suggesting their unfolding reversibility. However, the presence of AP-I during US treatment reduced protein concentration, up to complete removal under the most powerful conditions. In wine, the temperature effect was enough to lower chitinase levels (~48% and ~54% reduction at 40°C and 70°C, respectively) but had an undetectable effect on TLPs level. US significantly reduced both protein families, being more effective on chitinases (52% and 69% reduction at 20 s and 60 s, respectively) than TLPs (~11%) with the most powerful treatment. Interestingly, US was more successful than heating on chitinase (32%) and TLPs (15%) removal at the most energetic conditions. The supplement of AP-I combined with heating or US further reduced protein concentration. For heat treatment, both proteins were affected at both temperature conditions (TLPs: ~25% and ~23%; chitinases: ~58% and ~46%), while AP-I combined with US only affected TLPs under the most energetic treatment (~18%). The study found that US can affect unstable grape proteins and has additional mechanisms beyond sonication-induced temperature increase. When combined with AP-I, it further reduces unstable proteins, and suggests interaction between the US and AP-I. Further investigation is required to determine if US treatment destabilises proteins through a mechanism distinct from temperature increase, considering other factors affecting protein stability in winemaking conditions.

 

1. Celotti, E., Barahona, M. S. O., Bellantuono, E., Cardona, J., Roman, T., Nicolini, G., & Natolino, A. (2021). High-power ultrasound on the protein stability of white wines: Preliminary study of amplitude and sonication time. LWT, 147, 111602

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Adelaide Gallo1,2, Tomas Roman¹, Andrea Natolino³, Andrea Curioni4,5, Matteo Marangon4,5, Emilio Celotti³

1. Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38050 San Michele all’ Adige, Italy
2. C3A – Università degli Studi di Trento, Via Mach, 1, 38010 San Michele all’Adige, Italy
3. Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, 33100 Udine, Italy
4. Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell’Uni-versità, 16, 35020 Legnaro, Italy
5. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, 31015 Conegliano, Italy

Contact the author*

Keywords

Ultrasound, Aspergillopepsins I, TLPs, Protein stability

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

DETERMINATION OF FREE AMINO ACIDS, AMINO ACID POTENTIAL AND PROTEASE ACTIVITY IN THE LEES AND STILL WINES OF CHAMPAGNE

Prior to winemaking, organic or mineral nitrogen compound concentrations are usually measured in the vineyard and in grape musts. These indicators facilitate vine cultivation decisions, usually through yield or vigor. During vinification, yeast and bacteria metabolize nitrogen compounds in the musts in order to generate biomass. After fermentation, the microorganisms rerelease a part of this nitrogen as soluble compounds into the wines. Another part remains bound in the lees and can be lost during racking. The must’s natural nitrogen quantities, additional supplements during fermentation, and lees contact management enhance the release of nitrogen compounds to the wines. During ageing these nitrogen compounds – primarily the amino acids – are implicated in the generation of odorous compounds such as heterocycles(1).

HOW TO EVALUATE THE QUALITY OF NATURAL WINES?

The movement of Natural wines has clearly increased in the last few years, to reach a high demand from consumers nowadays. Switzerland has not been left out of this movement and has created a dedicated association in 2021. This association has the ambition to develop a specific tasting sheet for natural wines. The study of the tasting notes shows that the olfactory description of wines is recent but predominant today. But wine is a product makes to be drunk and not (just) to smell it. Based on these findings, a new 100-point tasting sheet has been developed. The main characteristics are 1) an evaluation in the mouth before the description of the olfaction, 2) to give 50% of the points on the judgment for the mouth characteristics, 3) to pejorate the visual aspects only if the wine is judged as “not drinkable” and 4) to express personal emotions.

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

INVESTIGATION OF MALIC ACID METABOLIC PATHWAYS DURING ALCOHOLIC FERMENTATION USING GC-MS, LC-MS, AND NMR DERIVED 13C-LABELED DATA

Malic acid has a strong impact on wine pH and the contribution of fermenting yeasts to modulate its concentration has been intensively investigated in the past. Recent advances in yeast genetics have shed light on the unexpected property of some strains to produce large amounts of malic acid (“acidic strains”) while most of the wine starters consume it during the alcoholic fermentation. Being a key metabolite of the central carbohydrate metabolism, malic acid participates to TCA and glyoxylate cycles as well as neoglucogenesis. Although present at important concentrations in grape juice, the metabolic fate of malic acid has been poorly investigated.

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.