GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Abstract

Context and purpose of the study ‐ Exposure to solar radiation affects berry composition through photomorphogenesis or changes in temperature. Flavonol synthesis is upregulated by UV‐B radiation leaving a fingerprint on flavonol profile. This study aimed to test the factors affecting flavonol accumulation and profile and their potential as an indicator to assess the overall exposure of red wine grape berry to solar radiation.

Material and methods ‐ We performed three experiments to study the response of flavonol accumulation and profile to (1) three different solar radiation exclusion treatments (shading nets) during berry development; (2) canopy porosity and leaf area index (LAI); and (3) natural variability of vine vigour and canopy management practices.

Results ‐ Results showed a strong relationship between global radiation, inverse dormant pruning weights or canopy porosity (inversely proportional to LAI) and % kaempferol or % quercetin. Furthermore, the increase in concentration of the above two flavonols was associated with a reduction of % myricetin. Total flavonol content, % kaempferol, % quercetin and % myricetin had significant correlations with inverse dormant pruning weights, but these were less sensitive to over‐ripening or water deficits. Flavonol profile was associated to site hydrology (wetness index) through changes in vigour, and to LAI; and responded to shoot thinning or fruit‐zone leaf removal. Flavonol profile was also correlated to the maximal temperature reached by the clusters. These results support the reliability of the flavonol profile as an assessment parameter for studies aiming to discuss canopy architecture or the effect of solar radiation on grapevine berries.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Johann MARTÍNEZ‐LÜSCHER (1), Luca BRILLANTE (2,3), S. Kaan KURTURAL (1)

(1) Department of Viticulture and Enology University of California, Davis, U.S.A.
(2) Department of Viticulture and Enology California State University, Fresno, U.S.A.

Contact the author

Keywords

flavonoids, solar radiation, temperature, fruit ripening, grape composition, precision agriculture, UV‐B radiation

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Mitigating the effects of climate change on berry composition by canopy management

Primary and secondary metabolites are major components of grape composition and their balances define wine typicality

The terroir of Carnuntum: investigation of the physiogeographic characteristics and interdisciplinary study of viticultural functions of the Carnuntum wine district, Austria

During a three-year period, the vineyards of the Carnuntum wine district are investigated for their terroir characteristics. The interdisciplinary study is aimed at the description of the physiogeographic

IBMP-Polypenol interactions: Impact on volatility and sensory perception in model wine solution

3-Isobutyl-2-methoxypyrazine (IBMP) is one of the key molecules in wine aroma with a bell pepper aroma and a very low threshold in wine, 1-6 ng/L for white wine and 10-16 ng/L in red wine1. The differences in these thresholds are likely due to IBMP-non volatile matrix interactions. It has indeed been shown that polyphenols may influence the volatility of flavor compounds2. In the present study, we focus on IBMP-polyphenols interactions in relation to volatility and sensory perception in model wine solution. Methods: 1. GC-MS Static Headspace Analysis: Samples were analyzed by Static headspace analysis with an Agilent 7890A gas chromatograph coupled to HP 5975C mass spectrometry detector (Agilent Technologies, Santa Clara, CA, USA).

Description of the relationship between trunk disease expression and meteorological conditions, irrigations and physiological response in Chardonnay grapevines

In this audio recording of the IVES science meeting 2022, Florence Fontaine (Université de Reims Champagne Ardenne) speaks about grapevine trunk disease. This presentation is based on an original article accessible for free on OENO One.

Microbial resources for improving the sustainability in oenology

Sulphur dioxide has long been considered an irreplaceable additive due to its numerous significant positive effects during winemaking and beyond.