GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Abstract

Context and purpose of the study ‐ Exposure to solar radiation affects berry composition through photomorphogenesis or changes in temperature. Flavonol synthesis is upregulated by UV‐B radiation leaving a fingerprint on flavonol profile. This study aimed to test the factors affecting flavonol accumulation and profile and their potential as an indicator to assess the overall exposure of red wine grape berry to solar radiation.

Material and methods ‐ We performed three experiments to study the response of flavonol accumulation and profile to (1) three different solar radiation exclusion treatments (shading nets) during berry development; (2) canopy porosity and leaf area index (LAI); and (3) natural variability of vine vigour and canopy management practices.

Results ‐ Results showed a strong relationship between global radiation, inverse dormant pruning weights or canopy porosity (inversely proportional to LAI) and % kaempferol or % quercetin. Furthermore, the increase in concentration of the above two flavonols was associated with a reduction of % myricetin. Total flavonol content, % kaempferol, % quercetin and % myricetin had significant correlations with inverse dormant pruning weights, but these were less sensitive to over‐ripening or water deficits. Flavonol profile was associated to site hydrology (wetness index) through changes in vigour, and to LAI; and responded to shoot thinning or fruit‐zone leaf removal. Flavonol profile was also correlated to the maximal temperature reached by the clusters. These results support the reliability of the flavonol profile as an assessment parameter for studies aiming to discuss canopy architecture or the effect of solar radiation on grapevine berries.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Johann MARTÍNEZ‐LÜSCHER (1), Luca BRILLANTE (2,3), S. Kaan KURTURAL (1)

(1) Department of Viticulture and Enology University of California, Davis, U.S.A.
(2) Department of Viticulture and Enology California State University, Fresno, U.S.A.

Contact the author

Keywords

flavonoids, solar radiation, temperature, fruit ripening, grape composition, precision agriculture, UV‐B radiation

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Overall conceptual characterization of aged dry white wines using a mental descriptive questionnaire

The purpose of the present study was to understand the overall concept of an aged dry white wine using a descriptive mental questionnaire. A total of 680 worldwide participants, grouped according to their involvement in the wine business, replied to an online questionnaire to characterize the sensory analytical and synthetic descriptors of an aged dry white wine. The descriptors were selected using a Check-All-That-Apply (CATA) approach concerning wine colour, aroma, taste, mouthfeel, and global appreciation.

Monitoring of alcoholic fermentation: development of an applicable in-line system

Alcoholic fermentation plays a crucial role in the winemaking process. In addition to producing ethanol, it results in the formation of various secondary metabolites that significantly influence the wine’s characteristics.

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Biovi: a research program for reducing chemical input in vine and wine

Decrease of chemical inputs during vine management and winemaking is of great importance from a political and societal point of view. In our ongoing project we propose alternative tools to chemicals in the vineyard and the cellar. We have compared a conventional vineyard protection strategy to an alternative strategy using copper and biocontrol products (Biocontrol) against downy