GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Abstract

Context and purpose of the study ‐ Exposure to solar radiation affects berry composition through photomorphogenesis or changes in temperature. Flavonol synthesis is upregulated by UV‐B radiation leaving a fingerprint on flavonol profile. This study aimed to test the factors affecting flavonol accumulation and profile and their potential as an indicator to assess the overall exposure of red wine grape berry to solar radiation.

Material and methods ‐ We performed three experiments to study the response of flavonol accumulation and profile to (1) three different solar radiation exclusion treatments (shading nets) during berry development; (2) canopy porosity and leaf area index (LAI); and (3) natural variability of vine vigour and canopy management practices.

Results ‐ Results showed a strong relationship between global radiation, inverse dormant pruning weights or canopy porosity (inversely proportional to LAI) and % kaempferol or % quercetin. Furthermore, the increase in concentration of the above two flavonols was associated with a reduction of % myricetin. Total flavonol content, % kaempferol, % quercetin and % myricetin had significant correlations with inverse dormant pruning weights, but these were less sensitive to over‐ripening or water deficits. Flavonol profile was associated to site hydrology (wetness index) through changes in vigour, and to LAI; and responded to shoot thinning or fruit‐zone leaf removal. Flavonol profile was also correlated to the maximal temperature reached by the clusters. These results support the reliability of the flavonol profile as an assessment parameter for studies aiming to discuss canopy architecture or the effect of solar radiation on grapevine berries.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Johann MARTÍNEZ‐LÜSCHER (1), Luca BRILLANTE (2,3), S. Kaan KURTURAL (1)

(1) Department of Viticulture and Enology University of California, Davis, U.S.A.
(2) Department of Viticulture and Enology California State University, Fresno, U.S.A.

Contact the author

Keywords

flavonoids, solar radiation, temperature, fruit ripening, grape composition, precision agriculture, UV‐B radiation

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Future scenarios for viticultural climatic zoning in Europe

Climate is one of the main conditioning factors of winemaking. In this context, bioclimatic indices are a useful zoning tool, allowing the description of the suitability of a particular region

The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by several factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site.

Ultrastructural and chemical analysis of berry skin from two Champagne grapes varieties and in relation to Botrytis cinerea susceptibility

Botrytis cinerea is a necrotrophic pathogen that causes one of the most serious diseases of the grapevine (Vitis vinifera), grey mold or Botrytis bunch rot. In Champagne, the Botrytis cinerea disease leads to considerable economic losses for winemakers and wines exhibit organoleptic defaults.

Atypical ageing defect in Pinot Blanc wines: influence of the grapevine production management.

Atypical ageing (ATA) is a wine aroma fault occurring in white wines characterised by an early loss of varietal aroma as well as nuances of wet mop, acacia blossom, shoe polish and dirty rag among others. 2-aminoacetophenone (2AAP) – a degradation product of indole-3-acetic acid (IAA) – has been described as the major odour-active compound and chemical marker responsible for this off-flavour. Depending on the aroma intensity of wines, its odour threshold varies from 0.5 to 10.5 μg/L. It seems that a stress reaction in the vineyard triggered by climatic, pedological and viticultural factors can ultimately cause ATA development in wines and therefore shorten their shelf-life.

Radiative and thermal effects on fruit ripening induced by differences in soil colour

One of the intrinsic parts of a vineyard “terroir” is soil type and one of the characteristics of the soil is it’s colour. This can differ widely from bright white, as for some calcareous soils, to red, as in “terra rossa” soils, or black, as in slate soils.