GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Climate change 9 Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Changes in flavonol profile are a reliable indicator to assess the exposure of red grape berries to solar radiation and canopy architecture

Abstract

Context and purpose of the study ‐ Exposure to solar radiation affects berry composition through photomorphogenesis or changes in temperature. Flavonol synthesis is upregulated by UV‐B radiation leaving a fingerprint on flavonol profile. This study aimed to test the factors affecting flavonol accumulation and profile and their potential as an indicator to assess the overall exposure of red wine grape berry to solar radiation.

Material and methods ‐ We performed three experiments to study the response of flavonol accumulation and profile to (1) three different solar radiation exclusion treatments (shading nets) during berry development; (2) canopy porosity and leaf area index (LAI); and (3) natural variability of vine vigour and canopy management practices.

Results ‐ Results showed a strong relationship between global radiation, inverse dormant pruning weights or canopy porosity (inversely proportional to LAI) and % kaempferol or % quercetin. Furthermore, the increase in concentration of the above two flavonols was associated with a reduction of % myricetin. Total flavonol content, % kaempferol, % quercetin and % myricetin had significant correlations with inverse dormant pruning weights, but these were less sensitive to over‐ripening or water deficits. Flavonol profile was associated to site hydrology (wetness index) through changes in vigour, and to LAI; and responded to shoot thinning or fruit‐zone leaf removal. Flavonol profile was also correlated to the maximal temperature reached by the clusters. These results support the reliability of the flavonol profile as an assessment parameter for studies aiming to discuss canopy architecture or the effect of solar radiation on grapevine berries.

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Johann MARTÍNEZ‐LÜSCHER (1), Luca BRILLANTE (2,3), S. Kaan KURTURAL (1)

(1) Department of Viticulture and Enology University of California, Davis, U.S.A.
(2) Department of Viticulture and Enology California State University, Fresno, U.S.A.

Contact the author

Keywords

flavonoids, solar radiation, temperature, fruit ripening, grape composition, precision agriculture, UV‐B radiation

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Shades of shading: chemical and sensory evaluation of riesling grown under various shading techniques

Sun exposure is needed for balanced grape ripening and sugar accumulation but is also one of the main drivers for a premature Riesling ageing

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Wine oxidation phenomena during the different processes of winemaking, aging and storage are closely related to the presence of oxygen and to the wine’s capacity for consumption.

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

Impact of dosage sugar-type and ageing on finished sparkling wine composition and development of Maillard reaction-associated compounds

The Maillard reaction (MR) is a non-enzymatic reaction between reducing sugars and amino acids, resulting in the production of volatile and flavour-active compounds.