terclim by ICS banner
IVES 9 IVES Conference Series 9 VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

Abstract

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.

The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification. Four red grape varieties were investigated, and fermentations were carried out with three different yeasts in triplicate. The density was evaluated daily and every 48h samples were taken to monitor changes in voltametric profiles and in the anthocyanins, polyphenols and precipitable tannins content.

The voltametric profiles of the wines were monitored using disposable screen-printed carbon electrodes with the working and counter electrode in carbon paste and an Ag/AgCl reference electrode. A drop of sample was loaded onto the sensor, and linear sweep voltammograms were acquired between 0-1200mV at a scan rate of 100mV/s. Analyzing the voltammograms, it was possible to observe differences between varieties and, within each variety, the temporal evolution of maceration.

In the second-derivative voltammograms, a positive peak was observed at low potentials, it increases initially showing a maximum after 7 days of fermentation. This peak is associated with the more easily oxidized compounds in wine. Another region of the voltammogram that shows a trend associated with the progress of fermentation is that around 440mV; in this region the negative peak reaches a maximum after 24 h after the start of maceration and then slowly decreases. This region has been associated with the concentration of monomeric anthocyanins and flavanols. The negative peak around 780mV results initially influenced by the presence of free SO₂, when SO₂ is bound the peak decreases in intensity and then increases again during maceration. By constructing PLS-R models for the concentration of anthocyanins, polyphenols and precipitable tannins the best pre-processing method resulted the second derivative and good regression models were obtained (R2 from 0.75 to 0.95).

In conclusion, this study provides a first proof of concept of the suitability of a simple analytical approach based on linear sweep voltammetry to monitor the evolution of phenolic composition during red wine maceration.

 

1. P. A. Kilmartin, Electrochemistry applied to the analysis of wine: A mini-review, Electrochemistry Communications, 2016, 67, 39-42
2. M. Ugliano, Rapid fingerprinting of white wine oxidizable fraction and classification of white wines using disposable screen printed sensors and derivative voltammetry, Food Chemistry, 2016, 212, 837-843
3. C. Ferreira, M.P. Sáenz-Navajas, V. Carrascón, T. Næs, P. Fernández-Zurbano, V. Ferreira, An assessment of voltammetry on disposable screen printed electrodes to predict wine chemical composition and oxygen consumption rates, Food Chemistry, 2021, 365, 130405

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Leonardo Vanzo¹, Nicola Dalla Valle¹, Giacomo Cristanelli¹, Davide Slaghenaufi¹, Maurizio Ugliano¹

1. Department of Biotechnology, University of Verona

Contact the author*

Keywords

Maceration, Voltammetry, Polyphenols, Red wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.