terclim by ICS banner
IVES 9 IVES Conference Series 9 VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

Abstract

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.

The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification. Four red grape varieties were investigated, and fermentations were carried out with three different yeasts in triplicate. The density was evaluated daily and every 48h samples were taken to monitor changes in voltametric profiles and in the anthocyanins, polyphenols and precipitable tannins content.

The voltametric profiles of the wines were monitored using disposable screen-printed carbon electrodes with the working and counter electrode in carbon paste and an Ag/AgCl reference electrode. A drop of sample was loaded onto the sensor, and linear sweep voltammograms were acquired between 0-1200mV at a scan rate of 100mV/s. Analyzing the voltammograms, it was possible to observe differences between varieties and, within each variety, the temporal evolution of maceration.

In the second-derivative voltammograms, a positive peak was observed at low potentials, it increases initially showing a maximum after 7 days of fermentation. This peak is associated with the more easily oxidized compounds in wine. Another region of the voltammogram that shows a trend associated with the progress of fermentation is that around 440mV; in this region the negative peak reaches a maximum after 24 h after the start of maceration and then slowly decreases. This region has been associated with the concentration of monomeric anthocyanins and flavanols. The negative peak around 780mV results initially influenced by the presence of free SO₂, when SO₂ is bound the peak decreases in intensity and then increases again during maceration. By constructing PLS-R models for the concentration of anthocyanins, polyphenols and precipitable tannins the best pre-processing method resulted the second derivative and good regression models were obtained (R2 from 0.75 to 0.95).

In conclusion, this study provides a first proof of concept of the suitability of a simple analytical approach based on linear sweep voltammetry to monitor the evolution of phenolic composition during red wine maceration.

 

1. P. A. Kilmartin, Electrochemistry applied to the analysis of wine: A mini-review, Electrochemistry Communications, 2016, 67, 39-42
2. M. Ugliano, Rapid fingerprinting of white wine oxidizable fraction and classification of white wines using disposable screen printed sensors and derivative voltammetry, Food Chemistry, 2016, 212, 837-843
3. C. Ferreira, M.P. Sáenz-Navajas, V. Carrascón, T. Næs, P. Fernández-Zurbano, V. Ferreira, An assessment of voltammetry on disposable screen printed electrodes to predict wine chemical composition and oxygen consumption rates, Food Chemistry, 2021, 365, 130405

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Leonardo Vanzo¹, Nicola Dalla Valle¹, Giacomo Cristanelli¹, Davide Slaghenaufi¹, Maurizio Ugliano¹

1. Department of Biotechnology, University of Verona

Contact the author*

Keywords

Maceration, Voltammetry, Polyphenols, Red wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.