terclim by ICS banner
IVES 9 IVES Conference Series 9 VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

Abstract

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.

The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification. Four red grape varieties were investigated, and fermentations were carried out with three different yeasts in triplicate. The density was evaluated daily and every 48h samples were taken to monitor changes in voltametric profiles and in the anthocyanins, polyphenols and precipitable tannins content.

The voltametric profiles of the wines were monitored using disposable screen-printed carbon electrodes with the working and counter electrode in carbon paste and an Ag/AgCl reference electrode. A drop of sample was loaded onto the sensor, and linear sweep voltammograms were acquired between 0-1200mV at a scan rate of 100mV/s. Analyzing the voltammograms, it was possible to observe differences between varieties and, within each variety, the temporal evolution of maceration.

In the second-derivative voltammograms, a positive peak was observed at low potentials, it increases initially showing a maximum after 7 days of fermentation. This peak is associated with the more easily oxidized compounds in wine. Another region of the voltammogram that shows a trend associated with the progress of fermentation is that around 440mV; in this region the negative peak reaches a maximum after 24 h after the start of maceration and then slowly decreases. This region has been associated with the concentration of monomeric anthocyanins and flavanols. The negative peak around 780mV results initially influenced by the presence of free SO₂, when SO₂ is bound the peak decreases in intensity and then increases again during maceration. By constructing PLS-R models for the concentration of anthocyanins, polyphenols and precipitable tannins the best pre-processing method resulted the second derivative and good regression models were obtained (R2 from 0.75 to 0.95).

In conclusion, this study provides a first proof of concept of the suitability of a simple analytical approach based on linear sweep voltammetry to monitor the evolution of phenolic composition during red wine maceration.

 

1. P. A. Kilmartin, Electrochemistry applied to the analysis of wine: A mini-review, Electrochemistry Communications, 2016, 67, 39-42
2. M. Ugliano, Rapid fingerprinting of white wine oxidizable fraction and classification of white wines using disposable screen printed sensors and derivative voltammetry, Food Chemistry, 2016, 212, 837-843
3. C. Ferreira, M.P. Sáenz-Navajas, V. Carrascón, T. Næs, P. Fernández-Zurbano, V. Ferreira, An assessment of voltammetry on disposable screen printed electrodes to predict wine chemical composition and oxygen consumption rates, Food Chemistry, 2021, 365, 130405

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Leonardo Vanzo¹, Nicola Dalla Valle¹, Giacomo Cristanelli¹, Davide Slaghenaufi¹, Maurizio Ugliano¹

1. Department of Biotechnology, University of Verona

Contact the author*

Keywords

Maceration, Voltammetry, Polyphenols, Red wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SENSORY PROFILES AND EUROPEAN CONSUMER PREFERENCE RELATED TOAROMA AND PHENOLIC COMPOSITION OF WINES MADE FROM FUNGUSRESISTANT GRAPE VARIETIES (PIWI)

Planting grape varieties with several resistance loci towards powdery and downy mildew reduces the use of fungicides significantly. These fungus resistant or PIWI varieties (acronym of German Pilzwiderstandsfähig) contribute significantly to the 50% pesticide reduction goal, set by the European Green Deal for 2030. However, wine growers hesitate to plant PIWIs as they lack experience in vinification and are uncertain, how consumer accept and buy wines from these yet mostly unknown varieties. Grapes from four white and three red PIWI varieties were vinified in three vintages to obtain four diffe-rent white and red wine styles, respectively plus one rosé.

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

WINE CONSUMER TRADE-OFF BETWEEN ORGANOLEPTIC CHARACTERISTICS AND SUSTAINABLE CLAIMS. AN EXPERIMENT ON RED WINES FROM BORDEAUX REGION

In economics, the perception of wine quality is not limited to sensorial characteristics: an indication of the region of production significantly affects the perception of quality and consumers’ WTP ([1]; [2]). However, [3] or more recently [4] show that even if a wine has an organic label, the taste of wine remains the predominant criterion in consumer preferences. The contribution of our experiment is to evaluate the impact of responsible attributes (organic label, Non Added Sulfites, HVE certification) on the appreciation of several red wines on the market. More than 280 consumers participated to the present study and they perform 25 tastings divided into 5 different sessions. 20 different red wines from Bordeaux Area are tasted.

EVALUATION OF INDIGENOUS SACCHAROMYCES CEREVISIAE ISOLATES FOR THEIR POTENTIAL USE AS FERMENTATION STARTERS IN ASSYRTIKO WINE

Assyrtiko is a rare ancient grape variety that constitutes one of the most popular in Greece. The objective of the current research was to evaluate indigenous Saccharomyces cerevisiae isolates as fermentation starters and also test the possible strain impact on volatile profile of Assyrtiko wine. 163 S. cerevisiae isolates, which were previously selected from spontaneous alcoholic fermentation, were identified at strain level by interdelta-PCR genomic fingerprinting. Yeasts strains were examined for their fermentative capacity in laboratory scale fermentation on pasteurized Assyrtiko grape must.

FUNCTIONALIZED MESOPOROUS SILICA IS A VIABLE ALTERNATIVE TO BENTONITE FOR WINE PROTEIN STABILIZATION

The presence of grape-derived heat unstable proteins can lead to haze formation in white wines [1], an instability prevented by removing these proteins by adding bentonite, a hydrated aluminum silicate that interacts electrostatically with wine proteins leading to their flocculation. Despite effective, using bentonite has several drawbacks as the costs associated with its use, the potential negative effects on wine quality, and its environmental impact, so that alternative solutions are needed.