terclim by ICS banner
IVES 9 IVES Conference Series 9 VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

Abstract

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.

The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification. Four red grape varieties were investigated, and fermentations were carried out with three different yeasts in triplicate. The density was evaluated daily and every 48h samples were taken to monitor changes in voltametric profiles and in the anthocyanins, polyphenols and precipitable tannins content.

The voltametric profiles of the wines were monitored using disposable screen-printed carbon electrodes with the working and counter electrode in carbon paste and an Ag/AgCl reference electrode. A drop of sample was loaded onto the sensor, and linear sweep voltammograms were acquired between 0-1200mV at a scan rate of 100mV/s. Analyzing the voltammograms, it was possible to observe differences between varieties and, within each variety, the temporal evolution of maceration.

In the second-derivative voltammograms, a positive peak was observed at low potentials, it increases initially showing a maximum after 7 days of fermentation. This peak is associated with the more easily oxidized compounds in wine. Another region of the voltammogram that shows a trend associated with the progress of fermentation is that around 440mV; in this region the negative peak reaches a maximum after 24 h after the start of maceration and then slowly decreases. This region has been associated with the concentration of monomeric anthocyanins and flavanols. The negative peak around 780mV results initially influenced by the presence of free SO₂, when SO₂ is bound the peak decreases in intensity and then increases again during maceration. By constructing PLS-R models for the concentration of anthocyanins, polyphenols and precipitable tannins the best pre-processing method resulted the second derivative and good regression models were obtained (R2 from 0.75 to 0.95).

In conclusion, this study provides a first proof of concept of the suitability of a simple analytical approach based on linear sweep voltammetry to monitor the evolution of phenolic composition during red wine maceration.

 

1. P. A. Kilmartin, Electrochemistry applied to the analysis of wine: A mini-review, Electrochemistry Communications, 2016, 67, 39-42
2. M. Ugliano, Rapid fingerprinting of white wine oxidizable fraction and classification of white wines using disposable screen printed sensors and derivative voltammetry, Food Chemistry, 2016, 212, 837-843
3. C. Ferreira, M.P. Sáenz-Navajas, V. Carrascón, T. Næs, P. Fernández-Zurbano, V. Ferreira, An assessment of voltammetry on disposable screen printed electrodes to predict wine chemical composition and oxygen consumption rates, Food Chemistry, 2021, 365, 130405

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Leonardo Vanzo¹, Nicola Dalla Valle¹, Giacomo Cristanelli¹, Davide Slaghenaufi¹, Maurizio Ugliano¹

1. Department of Biotechnology, University of Verona

Contact the author*

Keywords

Maceration, Voltammetry, Polyphenols, Red wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.