terclim by ICS banner
IVES 9 IVES Conference Series 9 VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

VOLTAMETRIC PROFILING OF RED WINE COMPOSITION DURING MACERATION: A STUDY ON FOUR GRAPE VARIETIES

Abstract

During red wine vinification, maceration allows the must, and consequently the wine, to be enriched with several compounds that contribute to the creation of the typical organoleptic characteristics of red wines. Among these, extraction of polyphenols (PPs) during maceration is a major process of enological interest.

The purpose of this study was the evaluate the suitability of a rapid analytical approach based in linear sweep voltammetry to monitor PPs extraction during vinification. Four red grape varieties were investigated, and fermentations were carried out with three different yeasts in triplicate. The density was evaluated daily and every 48h samples were taken to monitor changes in voltametric profiles and in the anthocyanins, polyphenols and precipitable tannins content.

The voltametric profiles of the wines were monitored using disposable screen-printed carbon electrodes with the working and counter electrode in carbon paste and an Ag/AgCl reference electrode. A drop of sample was loaded onto the sensor, and linear sweep voltammograms were acquired between 0-1200mV at a scan rate of 100mV/s. Analyzing the voltammograms, it was possible to observe differences between varieties and, within each variety, the temporal evolution of maceration.

In the second-derivative voltammograms, a positive peak was observed at low potentials, it increases initially showing a maximum after 7 days of fermentation. This peak is associated with the more easily oxidized compounds in wine. Another region of the voltammogram that shows a trend associated with the progress of fermentation is that around 440mV; in this region the negative peak reaches a maximum after 24 h after the start of maceration and then slowly decreases. This region has been associated with the concentration of monomeric anthocyanins and flavanols. The negative peak around 780mV results initially influenced by the presence of free SO₂, when SO₂ is bound the peak decreases in intensity and then increases again during maceration. By constructing PLS-R models for the concentration of anthocyanins, polyphenols and precipitable tannins the best pre-processing method resulted the second derivative and good regression models were obtained (R2 from 0.75 to 0.95).

In conclusion, this study provides a first proof of concept of the suitability of a simple analytical approach based on linear sweep voltammetry to monitor the evolution of phenolic composition during red wine maceration.

 

1. P. A. Kilmartin, Electrochemistry applied to the analysis of wine: A mini-review, Electrochemistry Communications, 2016, 67, 39-42
2. M. Ugliano, Rapid fingerprinting of white wine oxidizable fraction and classification of white wines using disposable screen printed sensors and derivative voltammetry, Food Chemistry, 2016, 212, 837-843
3. C. Ferreira, M.P. Sáenz-Navajas, V. Carrascón, T. Næs, P. Fernández-Zurbano, V. Ferreira, An assessment of voltammetry on disposable screen printed electrodes to predict wine chemical composition and oxygen consumption rates, Food Chemistry, 2021, 365, 130405

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Leonardo Vanzo¹, Nicola Dalla Valle¹, Giacomo Cristanelli¹, Davide Slaghenaufi¹, Maurizio Ugliano¹

1. Department of Biotechnology, University of Verona

Contact the author*

Keywords

Maceration, Voltammetry, Polyphenols, Red wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits.

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition.

IMPACT OF FINING WITH K-CARRAGEENAN, BENTONITE, AND CHITOSAN ON PROTEIN STABILITY AND MACROMOLECULAR COMPOUNDS OF ALBARIÑO WHITE WINE PRODUCED WITH AND WITHOUT PRE-FERMENTATIVE SKIN MACERATION

Pre-fermentative skin maceration is a technique used in white wine production to enhance varietal aroma, but it can increase protein concentration, leading to protein instability and haze formation [1]. To prevent protein instability, wine producers typically use fining agents such as bentonite, before wine bottling, which can negatively impact sensory characteristics and produce waste [2,3]. The aim of this study was to understand the impact of alternative techniques such as the application of polysaccharides (k-carrageenan and chitosan) on protein stability and on the wine macromolecular composition.