GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Abstract

Context and purpose of the study – Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).

Material and methods – Grapes cultivated in Brazil’s southern region (Bento Gonçalves, RS, altitude: 671 meters) receive a MeJa solution into different periods during ripening. Grapes were harvested, analyzed and the results compared to non-treated fruit (control group). Edaphoclimatic conditions and cultural practices were monitored (climate data, soil, fertilization, pruning, etc.). Anthocyanins and stilbenes were quantified by analytical reversed-phase liquid chromatography (Agilent Technologies, model 1260 Infinity) equipped with a DAD.

Results – The results obtained after a 2-years study has provided evidence that MeJa application is an eco-friendly means to enhance compounds such anthocyanin and stilbenes in Vitis labrusca L. grapes, grown even in subtropical climate. The effectiveness of MeJa application seems to be related to phenological state in the period of application. Best results were obtained with two applications: during véraison and approximately two weeks before harvest. Our results suggest that MeJa treatment enhances trans-resveratrol and piceid contents when grapes are treated in these conditions. Further studies are being conducted in other Brazilian regions with the objective of better understanding the behavior of Vitis labrusca L. grapes towards MeJa treatment in different edaphoclimatic conditions.

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Laís MORO*, Lucas Bueno do AMARAL, Neuza Mariko Aymoto HASSIMOTTO, Eduardo PURGATTO

Dept. Food Sciences and Experimental Nutrition/ FORC – Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, bl 14, Butantã, São Paulo, SP 05508-000, Brazil

Contact the author

Keywords

Vitis labrusca L., stilbenes, anthocyanins, pre-harvest, elicitors, methyl jasmonate

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

NADES extraction of anthocyanins derivatives from grape pomace

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process

Results of late-wurmian to present-day climatic-geological evolution on to spatial variability of pedologic-geological characters of the AOC Gaillac terroirs (Tarn, Midi-Pyrénées)

The AOC Gaillac area is divided into three main terroirs : « The left bank terraces », « The right bank coteaux » and
« The plateau Cordais ». This division is valid at a regional scale, but it suffers of a number of local-scale exceptions. This spatial variability of the pedologic-geologic characteristics at the plot scale has been derived mainly from the main late-Würmian solifluxion phase occurring at the transition between the peri-glacial climate and the Holocene temperate conditions (13,000-10,000 yrs BP).

Development of a new commercial phenolic analysis method for red grapes

Grape phenolic content is an important quality factor that influences the appearance and mouthfeel of premium red wines.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].