GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Abstract

Context and purpose of the study – Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).

Material and methods – Grapes cultivated in Brazil’s southern region (Bento Gonçalves, RS, altitude: 671 meters) receive a MeJa solution into different periods during ripening. Grapes were harvested, analyzed and the results compared to non-treated fruit (control group). Edaphoclimatic conditions and cultural practices were monitored (climate data, soil, fertilization, pruning, etc.). Anthocyanins and stilbenes were quantified by analytical reversed-phase liquid chromatography (Agilent Technologies, model 1260 Infinity) equipped with a DAD.

Results – The results obtained after a 2-years study has provided evidence that MeJa application is an eco-friendly means to enhance compounds such anthocyanin and stilbenes in Vitis labrusca L. grapes, grown even in subtropical climate. The effectiveness of MeJa application seems to be related to phenological state in the period of application. Best results were obtained with two applications: during véraison and approximately two weeks before harvest. Our results suggest that MeJa treatment enhances trans-resveratrol and piceid contents when grapes are treated in these conditions. Further studies are being conducted in other Brazilian regions with the objective of better understanding the behavior of Vitis labrusca L. grapes towards MeJa treatment in different edaphoclimatic conditions.

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Laís MORO*, Lucas Bueno do AMARAL, Neuza Mariko Aymoto HASSIMOTTO, Eduardo PURGATTO

Dept. Food Sciences and Experimental Nutrition/ FORC – Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, bl 14, Butantã, São Paulo, SP 05508-000, Brazil

Contact the author

Keywords

Vitis labrusca L., stilbenes, anthocyanins, pre-harvest, elicitors, methyl jasmonate

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Vineyard microclimate alterations induced by black mulch through transcriptome reshaped the flavoromics of Cabernet Sauvignon

To alter the vineyard microclimate and produce quality wine under a semi-arid climate, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017). The grapes were sampled at three growing stages to conduct the untargeted metabolome and transcriptome analysis. The upregulated genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered severe heat stress, resulting in lower sugar and higher acids at harvest. The integration of metabolome and transcriptome analysis identified the key genes responsible for the enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes and norisoprenoids concentrations in M grapes.

A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

Understanding how different pedoclimatic conditions interact with vine and berry physiology, and subsequently impact wine quality, is paramount for an good valorization of viticultural terroirs and can help to optimize mitigation strategies in the face of global warming

Characterization of intact glycoside aroma precursors of recovered minority Spanish red grape varieties by High-Resolution Mass Spectrometry

In Spain, the wide diversity of red grapevine varieties represents an advantage when choosing the most suitable one for cultivation based on different climatic conditions, without implying a loss of their enological potential.

Grapevine sugar concentration model in the Douro Superior, Portugal

Increasingly warm and dry climate conditions are challenging the viticulture and winemaking sector. Digital technologies and crop modelling bear the promise to provide practical answers to those challenges. As viticultural activities strongly depend on harvest date, its early prediction is particularly important, since the success of winemaking practices largely depends upon this key event, which should be based on an accurate and advanced plan of the annual cycle. Herein, we demonstrate the creation of modelling tools to assess grape ripeness, through sugar concentration monitoring. The study area, the Portuguese Côa valley wine region, represents an important terroir in the “Douro Superior” subregion. Two varieties (cv. Touriga Nacional and Touriga Franca) grown in five locations across the Côa Region were considered. Sugar accumulation in grapes, with concentrations between 170 and 230 g l-1, was used from 2014 to 2020 as an indicator of technological maturity conditioned by meteorological factors. The climatic time series were retrieved from the EU Copernicus Service, while sugar data were collected by a non-profit organization, ADVID, and by Sogrape, a leading wine company. The software for calibrating and validating this model framework was the Phenology Modeling Platform (PMP), version 5.5, using Sigmoid and growing degree-day (GDD) models for predictions. The performance was assessed through two metrics: Roots Mean Square Error (RMSE) and efficiency coefficient (EFF), while validation was undertaken using leave-one-out cross-validation. Our findings demonstrate that sugar content is mainly dependent on temperature and air humidity. The models achieved a performance of 0.65

Enhancing plant defense: carbon dots for efficient spray-induced gene silencing 

Ectopic RNA application for plant defense faces challenges in tree crops, including size, diffusion, and stability of active compounds such as ribonucleoproteins and nucleic acids. While existing strategies involve expressing dsRNA in transgenic plants targeting pathogens, our research strives to develop a transient RNAi system based on Spray-Induced Gene Silencing (SIGS). This approach aims to circumvent legal barriers and public concerns associated with genetically modified organisms (GMOs). Our strategy integrates SIGS with branched polyethyleneimine-functionalized Carbon Dots (bPEI-CDs) as nanocarriers, effectively addressing unique delivery challenges in plant defense as RNA stability and uptake enhancement