GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Abstract

Context and purpose of the study – Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).

Material and methods – Grapes cultivated in Brazil’s southern region (Bento Gonçalves, RS, altitude: 671 meters) receive a MeJa solution into different periods during ripening. Grapes were harvested, analyzed and the results compared to non-treated fruit (control group). Edaphoclimatic conditions and cultural practices were monitored (climate data, soil, fertilization, pruning, etc.). Anthocyanins and stilbenes were quantified by analytical reversed-phase liquid chromatography (Agilent Technologies, model 1260 Infinity) equipped with a DAD.

Results – The results obtained after a 2-years study has provided evidence that MeJa application is an eco-friendly means to enhance compounds such anthocyanin and stilbenes in Vitis labrusca L. grapes, grown even in subtropical climate. The effectiveness of MeJa application seems to be related to phenological state in the period of application. Best results were obtained with two applications: during véraison and approximately two weeks before harvest. Our results suggest that MeJa treatment enhances trans-resveratrol and piceid contents when grapes are treated in these conditions. Further studies are being conducted in other Brazilian regions with the objective of better understanding the behavior of Vitis labrusca L. grapes towards MeJa treatment in different edaphoclimatic conditions.

DOI:

Publication date: March 12, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Laís MORO*, Lucas Bueno do AMARAL, Neuza Mariko Aymoto HASSIMOTTO, Eduardo PURGATTO

Dept. Food Sciences and Experimental Nutrition/ FORC – Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, bl 14, Butantã, São Paulo, SP 05508-000, Brazil

Contact the author

Keywords

Vitis labrusca L., stilbenes, anthocyanins, pre-harvest, elicitors, methyl jasmonate

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Nitrogen isotope ratio (δ15N) as a tool to trace the major nitrogen source in vineyards

Aim: to elucidate if it is possible to detect variations in the source of nitrogen (organic vs. inorganic) measuring nitrogen isotope ratio (δ15N) in berries and to examine the degree of variation occurring for this parameter naturally within a vineyard.

The rootstock, the neglected player in the scion transpiration even during the night

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.

The future of wine grape growing regions in europe

Recent warming trends in climatic patterns are now evident from observational studies. Nowadays, investigating the possible impacts of climate change on biological systems has a great importance in several fields of science.

A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

The sustainability of viticulture hinges on maintaining quality and yield while reducing pesticide use. Promising strides in this direction involve the development of clones with enhanced disease tolerance, particularly through the knockout of plant susceptibility genes. Knocking out of Downy Mildew Resistant 6 (DMR6) led to increased levels of endogenous salicylic acid (SA), a regulator of immunity, resulting in enhanced tolerance to Downy Mildew (DM) and other diseases in various crops.

Effects of major enological variables on the evolution of the chemical profile in Schiava over the vinification: an experimental design approach

Schiava cv. (germ. Vernatsch) is a group of grape varieties used for winemaking (e.g. Kleinvernatsch-Schiava gentile, Grauvernatsch-Schiava grigia, Edelvernatsch-Schiava grossa) historically reported in Northern Italy, Austria, Germany and Croatia. Beside common phenotypic traits, these varieties have been also hypothesized to share a common geographical origin in Slavonia (Eastern Croatia). Nowadays, Schiava cv. are considered historical grape varieties of northern regions of Italy such as Lombardy, Trentino and South Tyrol. Traditionally widely consumed locally and also exported, over the past decades there has been a steady drop in production of these grapes, although with a parallel increase in wine quality. In this report, the effects of three main enological variables on the chemical components of Schiava produced in South Tyrol (var. Schiava grossa) are investigated from grape to bottle.