Macrowine 2021
IVES 9 IVES Conference Series 9 Oxygen consumption by diferent oenological tanins in a model wine solution

Oxygen consumption by diferent oenological tanins in a model wine solution

Abstract

Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins. All tannins were dissolved at different concentration in a model wine solution. The samples were placed in clear glass bottles into which a pill had been inserted (PreSens Precision Sensing GmbH) for the non-invasive measurement of dissolved oxygen by luminescence (NomasenseTM O2 Trace Oxigen Analyzer). The different solutions were saturated in oxygen by bubbling with air for 10 minutes. Once the bottles had been closed with a crown cap and bidule, oxygen was measured periodically [5]. RESULTS: The obtained results were used to develop a kinetic model in order to parameterize and compare the oxygen consumption rates of the different oenological tannins. Using this kinetic model it was possible to determine the average initial oxygen consumption rate (OCR) for the different commercial tannins. These results indicate that ellagitannins from oak (T3) are clearly the most effective as antioxidant with an OCR of 193.0 µg of O2/hour. Condensed tannins from grape seeds (T1) showed a OCR quite much lower (27.1 µg of O2/hour). In turn, tannins from quebracho (T4) showed an OCR intermediate between T3 and T1 (66.5 µg of O2/hour) which is quite logical since tannins from this botanical source contains ellagitannins and condensed tannins. Finally, gallotannins from chinese gallnuts (T2) showed the lowest OCR (6.9 µg of O2/hour). CONCLUSIONS: Ellagitannins have a capacity for oxygen consumption far greater than condensed tannins and especially than gallotannins. Consequently, ellagitannins are among the oenological tannins which are better able to protect the wine from oxidation.

REFERENCES: [1] Zamora F. (2003) Enólogos, 25, 26-30 [2] Versari, A., du Toit, W., Parpinello, G.P. (2013). Aust. J. Grape Wine Res., 19, 1-10. [3] Obreque-Slíer ; E., Peña-Neira, A., López-Solís , R., Ramírez-Escudero, C., Zamora, F. (2009) Eur Food Res Technol, 229, 859-866 [4] Magalhaes, L.M., Ramos, I.I., Reis, S., Segundo, M.A. (2014) Aust. J. Grape Wine Res., 20, 72-79. [5]Diéval, J.B., Vidal, S., Aagaard, O. (2011). Packag. Technol. Sci., 24, 375-385.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Fernando Zamora*, Esteban García-Romero, Isidro Hermosín-Gutíerrez, Joan Miquel Canals, Jordi Gombau, María Navarro, Olga Pascual, Sergio Gómez-Alonso

*Universitat Rovira i Virgili

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.