Macrowine 2021
IVES 9 IVES Conference Series 9 Oxygen consumption by diferent oenological tanins in a model wine solution

Oxygen consumption by diferent oenological tanins in a model wine solution

Abstract

Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins. All tannins were dissolved at different concentration in a model wine solution. The samples were placed in clear glass bottles into which a pill had been inserted (PreSens Precision Sensing GmbH) for the non-invasive measurement of dissolved oxygen by luminescence (NomasenseTM O2 Trace Oxigen Analyzer). The different solutions were saturated in oxygen by bubbling with air for 10 minutes. Once the bottles had been closed with a crown cap and bidule, oxygen was measured periodically [5]. RESULTS: The obtained results were used to develop a kinetic model in order to parameterize and compare the oxygen consumption rates of the different oenological tannins. Using this kinetic model it was possible to determine the average initial oxygen consumption rate (OCR) for the different commercial tannins. These results indicate that ellagitannins from oak (T3) are clearly the most effective as antioxidant with an OCR of 193.0 µg of O2/hour. Condensed tannins from grape seeds (T1) showed a OCR quite much lower (27.1 µg of O2/hour). In turn, tannins from quebracho (T4) showed an OCR intermediate between T3 and T1 (66.5 µg of O2/hour) which is quite logical since tannins from this botanical source contains ellagitannins and condensed tannins. Finally, gallotannins from chinese gallnuts (T2) showed the lowest OCR (6.9 µg of O2/hour). CONCLUSIONS: Ellagitannins have a capacity for oxygen consumption far greater than condensed tannins and especially than gallotannins. Consequently, ellagitannins are among the oenological tannins which are better able to protect the wine from oxidation.

REFERENCES: [1] Zamora F. (2003) Enólogos, 25, 26-30 [2] Versari, A., du Toit, W., Parpinello, G.P. (2013). Aust. J. Grape Wine Res., 19, 1-10. [3] Obreque-Slíer ; E., Peña-Neira, A., López-Solís , R., Ramírez-Escudero, C., Zamora, F. (2009) Eur Food Res Technol, 229, 859-866 [4] Magalhaes, L.M., Ramos, I.I., Reis, S., Segundo, M.A. (2014) Aust. J. Grape Wine Res., 20, 72-79. [5]Diéval, J.B., Vidal, S., Aagaard, O. (2011). Packag. Technol. Sci., 24, 375-385.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Fernando Zamora*, Esteban García-Romero, Isidro Hermosín-Gutíerrez, Joan Miquel Canals, Jordi Gombau, María Navarro, Olga Pascual, Sergio Gómez-Alonso

*Universitat Rovira i Virgili

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions.

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).