Macrowine 2021
IVES 9 IVES Conference Series 9 Oxygen consumption by diferent oenological tanins in a model wine solution

Oxygen consumption by diferent oenological tanins in a model wine solution

Abstract

Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins. All tannins were dissolved at different concentration in a model wine solution. The samples were placed in clear glass bottles into which a pill had been inserted (PreSens Precision Sensing GmbH) for the non-invasive measurement of dissolved oxygen by luminescence (NomasenseTM O2 Trace Oxigen Analyzer). The different solutions were saturated in oxygen by bubbling with air for 10 minutes. Once the bottles had been closed with a crown cap and bidule, oxygen was measured periodically [5]. RESULTS: The obtained results were used to develop a kinetic model in order to parameterize and compare the oxygen consumption rates of the different oenological tannins. Using this kinetic model it was possible to determine the average initial oxygen consumption rate (OCR) for the different commercial tannins. These results indicate that ellagitannins from oak (T3) are clearly the most effective as antioxidant with an OCR of 193.0 µg of O2/hour. Condensed tannins from grape seeds (T1) showed a OCR quite much lower (27.1 µg of O2/hour). In turn, tannins from quebracho (T4) showed an OCR intermediate between T3 and T1 (66.5 µg of O2/hour) which is quite logical since tannins from this botanical source contains ellagitannins and condensed tannins. Finally, gallotannins from chinese gallnuts (T2) showed the lowest OCR (6.9 µg of O2/hour). CONCLUSIONS: Ellagitannins have a capacity for oxygen consumption far greater than condensed tannins and especially than gallotannins. Consequently, ellagitannins are among the oenological tannins which are better able to protect the wine from oxidation.

REFERENCES: [1] Zamora F. (2003) Enólogos, 25, 26-30 [2] Versari, A., du Toit, W., Parpinello, G.P. (2013). Aust. J. Grape Wine Res., 19, 1-10. [3] Obreque-Slíer ; E., Peña-Neira, A., López-Solís , R., Ramírez-Escudero, C., Zamora, F. (2009) Eur Food Res Technol, 229, 859-866 [4] Magalhaes, L.M., Ramos, I.I., Reis, S., Segundo, M.A. (2014) Aust. J. Grape Wine Res., 20, 72-79. [5]Diéval, J.B., Vidal, S., Aagaard, O. (2011). Packag. Technol. Sci., 24, 375-385.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Fernando Zamora*, Esteban García-Romero, Isidro Hermosín-Gutíerrez, Joan Miquel Canals, Jordi Gombau, María Navarro, Olga Pascual, Sergio Gómez-Alonso

*Universitat Rovira i Virgili

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

2,5-Dimethyl-4-hydroxy-3(2H)-furanone (furaneol) is an important aroma compound in fruits, such as pineapple and strawberry, and is reported to contribute to the strawberry-like note in some wines. Several grapevine species are used in winemaking, and furaneol is one of the characteristic aroma compounds in wines made from American grape (Vitis labrusca) and its hybrid grape, similar to methyl anthranilate. Muscat Bailey A is a hybrid grape variety [V. labrusca (Bailey) x V. vinifera (Muscat Hamburg)], and its wine is one of the most popular in Japan. The inclusion of Muscat Bailey A in the ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine (OIV)’ in 2013 has further fueled its popularity among winemakers and researchers worldwide.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).