Macrowine 2021
IVES 9 IVES Conference Series 9 Oxygen consumption by diferent oenological tanins in a model wine solution

Oxygen consumption by diferent oenological tanins in a model wine solution

Abstract

Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins. All tannins were dissolved at different concentration in a model wine solution. The samples were placed in clear glass bottles into which a pill had been inserted (PreSens Precision Sensing GmbH) for the non-invasive measurement of dissolved oxygen by luminescence (NomasenseTM O2 Trace Oxigen Analyzer). The different solutions were saturated in oxygen by bubbling with air for 10 minutes. Once the bottles had been closed with a crown cap and bidule, oxygen was measured periodically [5]. RESULTS: The obtained results were used to develop a kinetic model in order to parameterize and compare the oxygen consumption rates of the different oenological tannins. Using this kinetic model it was possible to determine the average initial oxygen consumption rate (OCR) for the different commercial tannins. These results indicate that ellagitannins from oak (T3) are clearly the most effective as antioxidant with an OCR of 193.0 µg of O2/hour. Condensed tannins from grape seeds (T1) showed a OCR quite much lower (27.1 µg of O2/hour). In turn, tannins from quebracho (T4) showed an OCR intermediate between T3 and T1 (66.5 µg of O2/hour) which is quite logical since tannins from this botanical source contains ellagitannins and condensed tannins. Finally, gallotannins from chinese gallnuts (T2) showed the lowest OCR (6.9 µg of O2/hour). CONCLUSIONS: Ellagitannins have a capacity for oxygen consumption far greater than condensed tannins and especially than gallotannins. Consequently, ellagitannins are among the oenological tannins which are better able to protect the wine from oxidation.

REFERENCES: [1] Zamora F. (2003) Enólogos, 25, 26-30 [2] Versari, A., du Toit, W., Parpinello, G.P. (2013). Aust. J. Grape Wine Res., 19, 1-10. [3] Obreque-Slíer ; E., Peña-Neira, A., López-Solís , R., Ramírez-Escudero, C., Zamora, F. (2009) Eur Food Res Technol, 229, 859-866 [4] Magalhaes, L.M., Ramos, I.I., Reis, S., Segundo, M.A. (2014) Aust. J. Grape Wine Res., 20, 72-79. [5]Diéval, J.B., Vidal, S., Aagaard, O. (2011). Packag. Technol. Sci., 24, 375-385.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Fernando Zamora*, Esteban García-Romero, Isidro Hermosín-Gutíerrez, Joan Miquel Canals, Jordi Gombau, María Navarro, Olga Pascual, Sergio Gómez-Alonso

*Universitat Rovira i Virgili

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L).

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.