Macrowine 2021
IVES 9 IVES Conference Series 9 Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Abstract

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins. In the present study, a rapid and effective approach was developed to isolate the galloylated proanthocyanidin from the non-galloylated forms in grape seed tannins and fractionate the non-galloylated proanthocyanidin according to their degree of polymerization by the technique of Centrifugal partition chromatography (CPC). The application of CPC on grape tannins fractionation is efficient, less-time consuming, less expensive and with higher recovery. More importantly, it could effectively isolate galloylated tannins at the beginning and eliminate its interference in the other fractions. After fractionation performed by the technique of CPC, the repurification was achieved by either preparative hydrophilic interaction chromatography or reversed phase high-performance liquid chromatography (HPLC). Eventually, a series of individual condensed tannins with certain degree of polymerization and galloylation from grape were isolated successively. Analyte identity and purity were examined by reversed-phase UPLC-DAD-ESI-Q-TOF and normal-phase HPLC-UV-Fluo-MS, respectively. The astringency perception contributions of the purified individual tannins were examined by the approach of salivary binding ability test. The results were observed by HPLC-Fluo and quantified by the difference of the amount of proanthocyanidins between before and after interaction.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Wen Ma*, Hua Li, Michael Jourdes, Pierre Waffo-Téguo, Pierre-Louis Teissedre

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

Analysis of the oenological potentials of different oak forests in Hungary

Like France, Hungary has many oak forests used for making barrels since many years. But if the differences between the woods of the North, the East and the South-West forests of France are well known, this is probably not the case of Hungarian forests. However taking into account the essential differences of climates and soils, differences must be significant and the general name “Hungarian oak” must not have any real meaning. We have studied precisely (determination of concentrations of volatile and non-volatile wood compounds, anatomical criteria, measurement of antioxidant capacity) of oaks collected from northeastern Hungary and others collected from the Danube valley in the northwest of the country.

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).