Macrowine 2021
IVES 9 IVES Conference Series 9 Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Abstract

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins. In the present study, a rapid and effective approach was developed to isolate the galloylated proanthocyanidin from the non-galloylated forms in grape seed tannins and fractionate the non-galloylated proanthocyanidin according to their degree of polymerization by the technique of Centrifugal partition chromatography (CPC). The application of CPC on grape tannins fractionation is efficient, less-time consuming, less expensive and with higher recovery. More importantly, it could effectively isolate galloylated tannins at the beginning and eliminate its interference in the other fractions. After fractionation performed by the technique of CPC, the repurification was achieved by either preparative hydrophilic interaction chromatography or reversed phase high-performance liquid chromatography (HPLC). Eventually, a series of individual condensed tannins with certain degree of polymerization and galloylation from grape were isolated successively. Analyte identity and purity were examined by reversed-phase UPLC-DAD-ESI-Q-TOF and normal-phase HPLC-UV-Fluo-MS, respectively. The astringency perception contributions of the purified individual tannins were examined by the approach of salivary binding ability test. The results were observed by HPLC-Fluo and quantified by the difference of the amount of proanthocyanidins between before and after interaction.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Wen Ma*, Hua Li, Michael Jourdes, Pierre Waffo-Téguo, Pierre-Louis Teissedre

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Evaluating South African Chenin blanc wine styles using an LC-MS screening method

Sorting Chenin blanc is one of the most important white wine cultivars in South Africa. It has received a lot of attention and accolades in the past years and more research than ever is dedicated to this versatile cultivar. According to the Chenin blanc association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded
(RRU), and Rich and Ripe Wooded (RRW). They are traditionally established with the aid of expert sensory evaluation, but the cost and the (subjective) human factor are aspects to be taken into account. A more objective and possibly robust way of assessing and attributing these styles can be the use of chemical analysis.