Macrowine 2021
IVES 9 IVES Conference Series 9 Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

Abstract

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data. Two wines from different grape varieties, gamay and merlot from Switzerland, were ultrafiltered to provide four tannic fractions differing by the range of their polymerization degrees. Then, these fractions were added (individually or in combination) into their native wine matrix according to a specific experimental design. The reconstituted wines were then characterized by PVP precipitation tests using a dynamic nephelometer and by sensory assessment following two methods, Quantitative Descriptive Analysis, and Temporal Dominance of Sensations (TDS). For the sensory test, a panel of twenty trained judges generated a list of seven mouth-feel descriptors. Wines containing the fraction with the largest size tannins (range of highest polymerization degrees) were perceived as being more astringent and mouth-drying after spitting. Wines containing with the smallest size tannins added (range of lowest polymerization degrees) were perceived as more voluminous. With regards to the TDS, wines containing the largest tannins fraction were the most intense and mouth-drying, and the astringency and mouth-drying perceptions were the most persistent attributes. Wines containing the fraction with the smallest tannins were judged to be the most voluminous, bitter and sour. Finally, a positive correlation, RV=0.58, p=0.001, between the results of the precipitation test and the Quantitative Descriptive Analysis could be established.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Pierrick Rebenaque*, André Rawyler, Marc-Olivier Boldi, Pascale Deneulin

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.

Elicitors used as a tool to increase stilbenes in grapes and wines

The economic importance of grapevine as a crop plant makes Vitis vinífera a good model system to study the improvement of the nutraceutical properties of food products (Vezulli et al. 2007). Stilbenes in general, and trans-resveratrol in particular, have been reported to be responsible for various beneficial effects. Resveratrol´s biological properties include antibacteria and antifungal effects, as well as cardioprotective, neuroprotective and anticâncer actions (Guerrero et al. 2010 ). Stilbenes can be induced by biotic and abiotic elicitors since they are phytoalexins (Bavaresco et al. 2001).

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

The aromas found in young Bordeaux red wines made with Merlot and Cabernet Sauvignon suggest a complex mixture of aromas of fresh red fruits such as cherry or blackberry for Merlot, and strawberry or blackcurrant for Cabernet Sauvignon. The aromas of these wines are closely linked with the maturity of the grapes. The climate change that has occurred during the last decade in Bordeaux has induced changes in the ripening conditions of grape berries. It is now widely admitted that over-ripening of the berries during hot and dry summers results in the development of characteristic flavors reminiscent of cooked fruits (fig, prune). The presence of these overriding odors found in both musts and young wines affects the quality and subtlety of the wine flavor and may shorten its shelf life.