terclim by ICS banner
IVES 9 IVES Conference Series 9 Leaf necrosis induced by the insecticide carbaryl in Vitis rupestris ‘B38’

Leaf necrosis induced by the insecticide carbaryl in Vitis rupestris ‘B38’

Abstract

Carbaryl is an acetylcholine esterase inhibitor-type insecticide used for pest control on grapevine. We repeatedly observed the occurrence of interveinal leaf necrosis following carbaryl spray application in a Vitis rupestris x Vitis riparia F1 hybrid progeny vineyard.  Spray applications induced necrosis in this progeny under both Missouri and New York field conditions an approximate one-to-one sensitive-to-insensitive segregation ratio and with 42% concordance. Results of subsequent in vitro experiments established causality between carbaryl treatment and leaf necrosis and confirmed the pattern of segregation observed in the field. We consistently map this phenotype to a major QTL on chromosome 16 of the female parent V. rupestris ‘B38’ regardless of whether we used field or in vitro-generated phenotype data. The PN40024 12x.v1 genome sequence under the QTL peak is a gene-rich region encoding several receptor-like kinases and nucleotide-binding leucine-rich repeat receptors. RNA-seq and qPCR analyses of the carbaryl-induced transcriptome demonstrated the up-regulation of genes encoding the immune response regulator EDS1, pathogenesis-related proteins and stilbene synthases in sensitive, but not in insensitive progeny plants. While the development of leaf necrosis involved certain components of pathogen-triggered cell death regulatory pathway, other molecular events did not agree with the “misguided immune response” paradigm. An extensive screen of native North American grapevine accessions suggested that carbaryl sensitivity is rare in Vitis, and possibly unique to the V. rupestris ‘B38’ genotype, though members of Parthenocissus, another Vitaceae genus, are damaged by carbaryl.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Laszlo Kovacs1*, Courteny Coleman1, Courtney Duncan1, Michael Bigelow1, Cody Pham1, Zachary Harris2, Jason Londo3

1 Department of Biology, Missouri State University, Springfield, MO USA
2 Donald Danforth Plant Science Center, St. Louis, MO USA
3 School of Integrative Plant Science, Cornell University, Geneva, NY USA

Contact the author*

Keywords

Insecticide damage, Vitis rupestris ‘B38’, leaf necrosis, immune response, quantitative trait locus

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

A sundial vineyard: impact of row density and orientation on cv. Cabernet-Sauvignon physiology and grape composition, insights to face a climate change scenario

An experimental vineyard with a radial array was planted in 2018, to provide valuable information on the relationship between orientation and planting density on plant physiology and cluster microclimate, and the consequent impacts on grape secondary metabolites, including aromas and polyphenols.

Asymmetrical flow field-flow fractionation with online multidetection is a viable tool to investigate colored red wine colloids

Despite its relevance for wine quality and stability, red wine colloids have not still been
sufficiently investigated, an occurrence due to the lack of suitable analytical techniques to study them as they are present in wine.

Exploring the use of high-power ultrasound in white and rosé winemaking

Since the approval in 2019 of the use of high-power ultrasound (US) in winemaking to support extractive processes from grape to must, the study of this technology in red winemaking has increased significantly, with laboratory and semi-industrial scale studies.

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Under-row low competitive herbaceous cover: A sustainable alternative to herbicide in vineyards

Weeds are undesirable plants in agroecosystems as they compete with the crop for essential resources such as light, water and nutrients, compromising the final yield and its quality.