terclim by ICS banner
IVES 9 IVES Conference Series 9 Leaf necrosis induced by the insecticide carbaryl in Vitis rupestris ‘B38’

Leaf necrosis induced by the insecticide carbaryl in Vitis rupestris ‘B38’

Abstract

Carbaryl is an acetylcholine esterase inhibitor-type insecticide used for pest control on grapevine. We repeatedly observed the occurrence of interveinal leaf necrosis following carbaryl spray application in a Vitis rupestris x Vitis riparia F1 hybrid progeny vineyard.  Spray applications induced necrosis in this progeny under both Missouri and New York field conditions an approximate one-to-one sensitive-to-insensitive segregation ratio and with 42% concordance. Results of subsequent in vitro experiments established causality between carbaryl treatment and leaf necrosis and confirmed the pattern of segregation observed in the field. We consistently map this phenotype to a major QTL on chromosome 16 of the female parent V. rupestris ‘B38’ regardless of whether we used field or in vitro-generated phenotype data. The PN40024 12x.v1 genome sequence under the QTL peak is a gene-rich region encoding several receptor-like kinases and nucleotide-binding leucine-rich repeat receptors. RNA-seq and qPCR analyses of the carbaryl-induced transcriptome demonstrated the up-regulation of genes encoding the immune response regulator EDS1, pathogenesis-related proteins and stilbene synthases in sensitive, but not in insensitive progeny plants. While the development of leaf necrosis involved certain components of pathogen-triggered cell death regulatory pathway, other molecular events did not agree with the “misguided immune response” paradigm. An extensive screen of native North American grapevine accessions suggested that carbaryl sensitivity is rare in Vitis, and possibly unique to the V. rupestris ‘B38’ genotype, though members of Parthenocissus, another Vitaceae genus, are damaged by carbaryl.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Laszlo Kovacs1*, Courteny Coleman1, Courtney Duncan1, Michael Bigelow1, Cody Pham1, Zachary Harris2, Jason Londo3

1 Department of Biology, Missouri State University, Springfield, MO USA
2 Donald Danforth Plant Science Center, St. Louis, MO USA
3 School of Integrative Plant Science, Cornell University, Geneva, NY USA

Contact the author*

Keywords

Insecticide damage, Vitis rupestris ‘B38’, leaf necrosis, immune response, quantitative trait locus

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Analysis of the interaction of melatonin with glycolytic proteins in Saccharomyces cerevisiae during alcoholic fermentation 

Melatonin is a bioactive compound with antioxidant properties, that has been found in many fermented beverages, such as beer and wine [1]. Indeed, it has been shown that yeast can synthesize melatonin during alcoholic fermentation, although its role inside the cell, as well as the metabolic pathway involved in its synthesis, is still unclear [1]. Recent studies showed that during fermentation, melatonin interacts with different proteins of the glycolytic pathway in both Saccharomyces and non-Saccharomyces yeast, for instance glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase or enolase [2].

Harvest dates, climate, and viticultural region zoning in Greece

Climate is clearly one of the most important factors in the success of all agricultural systems, influencing whether a crop is suitable to a given region, largely controlling crop production and quality, and ultimately driving economic sustainability. Today many assessments of a region’s climate comes from a combination of station and spatial climate data analyses that facilitate the evaluation of the general suitability for viticulture and potential wine styles, allows for comparisons between wine regions, and offers growers a measure of assessing appropriate cultivars and sites.

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.

New genomic techniques for sustainable management of water stress and pathogen control

Context and purpose of the study. Climate changes pose the need to develop new grapevine varieties and rootstocks that are more tolerant to stress and diseases.

Geologic and geomorphologic features applied for identification of wine terroir units by digital image processing, spectroradiometric and GIS techniques in Encruzilhada do Sul, RS, Brazil

Results in the characterization of a new wine terroir unit in south Brazil are reported. Presently, several areas in Brazil are being studied, in an effort to define new wine terroirs and improve the quality of Brazilian wines.