terclim by ICS banner
IVES 9 IVES Conference Series 9 Leaf necrosis induced by the insecticide carbaryl in Vitis rupestris ‘B38’

Leaf necrosis induced by the insecticide carbaryl in Vitis rupestris ‘B38’

Abstract

Carbaryl is an acetylcholine esterase inhibitor-type insecticide used for pest control on grapevine. We repeatedly observed the occurrence of interveinal leaf necrosis following carbaryl spray application in a Vitis rupestris x Vitis riparia F1 hybrid progeny vineyard.  Spray applications induced necrosis in this progeny under both Missouri and New York field conditions an approximate one-to-one sensitive-to-insensitive segregation ratio and with 42% concordance. Results of subsequent in vitro experiments established causality between carbaryl treatment and leaf necrosis and confirmed the pattern of segregation observed in the field. We consistently map this phenotype to a major QTL on chromosome 16 of the female parent V. rupestris ‘B38’ regardless of whether we used field or in vitro-generated phenotype data. The PN40024 12x.v1 genome sequence under the QTL peak is a gene-rich region encoding several receptor-like kinases and nucleotide-binding leucine-rich repeat receptors. RNA-seq and qPCR analyses of the carbaryl-induced transcriptome demonstrated the up-regulation of genes encoding the immune response regulator EDS1, pathogenesis-related proteins and stilbene synthases in sensitive, but not in insensitive progeny plants. While the development of leaf necrosis involved certain components of pathogen-triggered cell death regulatory pathway, other molecular events did not agree with the “misguided immune response” paradigm. An extensive screen of native North American grapevine accessions suggested that carbaryl sensitivity is rare in Vitis, and possibly unique to the V. rupestris ‘B38’ genotype, though members of Parthenocissus, another Vitaceae genus, are damaged by carbaryl.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Laszlo Kovacs1*, Courteny Coleman1, Courtney Duncan1, Michael Bigelow1, Cody Pham1, Zachary Harris2, Jason Londo3

1 Department of Biology, Missouri State University, Springfield, MO USA
2 Donald Danforth Plant Science Center, St. Louis, MO USA
3 School of Integrative Plant Science, Cornell University, Geneva, NY USA

Contact the author*

Keywords

Insecticide damage, Vitis rupestris ‘B38’, leaf necrosis, immune response, quantitative trait locus

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Optimizing vine pruning of Pinot noir and Müller-Thurgau after extreme hail damage

Hail damage can have a major impact on the vine’s physiological growth (defoliation, wood and cane damage) and can lead to significant yield and economic losses.

Spatial characterisation of terrain units in the Bottelaryberg-Simonsberg-Helderberg wine growing area (South Africa)

The first South African wine was made by Jan van Riebeeck on the second of February 1659. His initial determination to produce wine at the Cape refreshment station was continued by other governors

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

Wine tourism in southern Italy: A surge in popularity and economic impact

Wine tourism has transformed from a leisure activity into a crucial part of the tourist experience, significantly contributing to rural tourism’s expansion in italy. It has witnessed a notable surge in popularity in recent years, evolving as a key motivator for travel (antonioli corigliano, 2002; brunori & rossi, 2000; città del vino & censis servizi, 2011; garibaldi, 2018; 2019a; 2020; montanari, 2009; romano & natilli, 2009). The allure of wine tourism, driven by sensory experiences and cultural immersion, continues to attract a diverse group of tourists. The economic impact is substantial, with events and festivals contributing approximately €2.5 billion annually.

Comparing vineyard irrigation management based in two different approaches: vegetation indices and SIMDualKc model

Water scarcity, high air temperatures, high vapor pressure deficit, and increasing frequency and intensity of extreme climatic events, namely heat waves, exert huge pressure on viticulture, as is the case of Mediterranean climates. Therefore, farmers rely more and more on irrigation to overcome these constraints. Deficit irrigation is a proved strategy to optimize irrigation efficiency and wine quality. The present study intends to demonstrate the application of precision techniques, namely remote sensing derived vegetation indices (VI) and an open source software, SIMDualKc, to compute crop evapotranspiration using the dual crop coefficient approach (Kcb + Ke), for deficit irrigation management.