terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Biotic interactions 9 Study of the effect of native vineyard bacteria on the expression of Plasmopara viticolaeffectors

Study of the effect of native vineyard bacteria on the expression of Plasmopara viticolaeffectors

Abstract

Downy mildew, caused by the oomycete Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni, is one of the most destructive grapevine diseases mostly affecting Vitis vinifera L. and impacting on viticulture. The pathogen invasion can induce in grapevine multiple defense reactions, first PAMP-Triggered Immunity and secondly Effector-Triggered Immunity. Plasmopara viticola can overcome these defense mechanisms through the secretion of effectors, such as RxLR, into the plant cells, making it easier for the oomycete to infect grapevines.  Currently, the use of chemical pesticides remains the most effective way to control the pathogen with severe negative side effects on the environment and animal health. Consequently, great attention has been recently paid to identifying new Biological Control Agents (BCAs). At CREA Viticulture and Enology, 47 bacterial isolates were collected from the leaves of three Vitis vinifera cultivars, Blush, Dawn seedless and Argentina, showing different degrees of tolerance to Plasmopara viticola. Three of the collected bacteria, that previous tests suggested as potentially good Plasmopara viticolaantagonists, were sprayed on Cabernet sauvignon leaves at 107 CFU ml-1 48 hours before leaf infection with Plasmopara viticola at 106 sporangia ml-1. A gene expression analysis of Plasmopara viticola effectors PvRxLR28 and PvRxLR67, performed through quantitative PCR, revealed an impairment in the expression levels of the two genes in treated leaves compared with control leaves. These results suggest these bacteria as potential BCAs against Plasmopara viticola. Further transcriptomic analysis will be performed to investigate bacterial effects on the expression of multiple Plasmopara viticola pathogenicity genes.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Camilla Mandorino1,2*, Antonella Salerno1,4, Annalisa Prencipe2, Marco Vendemia1, Flavia Angela Maria Maggiolini1, Maria Francesca Cardone1, Andreia Figueiredo3, Antonio Domenico Marsico1, Carlo Pazzani2

1 CREA – Viticulture and Enology, Turi, Italy
2Department of Biosciences, Biotechnology and Environment, University of Bari “A. Moro”, Bari, Italy
3 Biosystems and Integrative Sciences Institute (BioISI), Plant Biology Department, Science Faculty of Lisbon University, Lisbon, Portugal
4 Department of Soil, Plant and Food Science, University of Bari “A. Moro”, Bari, Italy

Contact the author*

Keywords

native vineyard bacteria, biological control agents, Plasmopara viticola, Vitis vinifera, RxLR effectors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Climatic variability studies at fine scale have been developed in recent years with the reduction of material cost and the development of competitive miniaturized sensors. This work is forming part the LIFE-ADVICLIM project, of which one of the objectives is to model spatial temperature variability at vineyard scale. In the Bordeaux pilot site, a large network of data loggers has been set up to record temperature close to the vine canopy. The reduced distance between plant foliage and measurement equipment raises specific issues and leads to an increased rate of outliers compared to data retrieved from classical weather stations. Some of these were detected during data analysis, but others could not be easily identified. The present study aims to address the issue of data quality control and provide recommendations for data processing in climatic studies at fine scale.

Introducing heterogeneity measurements in terroir studies. Application in the região demarcada do douro (n portugal)

Terroir zoning studies have to manage the heterogeneity and complexity of the landscape properties and processes. The varying geology is one of the main landscape properties conditioning the spatial variability of terroirs.

Discrimination of monovarietal Italian red wines using derivative voltammetry

Identification of specific analytical fingerprints associated to grape variety, origin, or vintage is of great interest for wine producers, regulatory agencies, and consumers. However, assessing such varietal fingerprint is complex, time consuming, and requires expensive analytical techniques. Voltammetry is a fast, cheap, and user-friendly analytical tool that has been used to investigate and measure wine phenolics.

Amphora Wines: To Pitch Or Not To Pitch

Amphora wines are known in Portugal as Vinhos de Talha. In this technology, alcoholic fermentation takes place in clay vessels that traditionally were pitched inside using pine pitch. Vinhos de Talha has a distinctive sensorial profile, due to the ancestral technique of vinification. However nowadays, some clay vessels are impermeabilized with other materials than pitch, such as bee wax and mainly epoxy resins.

Variety and climatic effects on quality scores in the Western US winegrowing regions

Wine quality is strongly linked to climate. Quality scores are often driven by climate variation across different winegrowing regions and years, but also influenced by other aspects of terroir, including variety. While recent work has looked at the relationship between quality scores and climate across many European regions, less work has examined New World winegrowing regions. Here we used scores from three major rating systems (Wine Advocate, Wine Enthusiast and Wine Spectator) combined with daily climate and phenology data to understand what drives variation across wine quality scores in major regions of the Western US, including regions in California, Oregon and Washington. We examined effects of variety, region, and in what phenological period climate was most predictive of quality. As in other studies, we found climate, based mainly on growing degree day (GDD) models, was generally associated with quality—with higher GDD associated with higher scores—but variety and region also had strong effects. Effects of region were generally stronger than variety. Certain varieties received the highest scores in only some areas, while other varieties (e.g., Merlot) generally scored lower across regions. Across phenological stages, GDD during budbreak was often most strongly associated with quality. Our results support other studies that warmer periods generally drive high quality wines, but highlight how much region and variety drive variation in scores outside of climate.