terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Biotic interactions 9 Study of the effect of native vineyard bacteria on the expression of Plasmopara viticolaeffectors

Study of the effect of native vineyard bacteria on the expression of Plasmopara viticolaeffectors

Abstract

Downy mildew, caused by the oomycete Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni, is one of the most destructive grapevine diseases mostly affecting Vitis vinifera L. and impacting on viticulture. The pathogen invasion can induce in grapevine multiple defense reactions, first PAMP-Triggered Immunity and secondly Effector-Triggered Immunity. Plasmopara viticola can overcome these defense mechanisms through the secretion of effectors, such as RxLR, into the plant cells, making it easier for the oomycete to infect grapevines.  Currently, the use of chemical pesticides remains the most effective way to control the pathogen with severe negative side effects on the environment and animal health. Consequently, great attention has been recently paid to identifying new Biological Control Agents (BCAs). At CREA Viticulture and Enology, 47 bacterial isolates were collected from the leaves of three Vitis vinifera cultivars, Blush, Dawn seedless and Argentina, showing different degrees of tolerance to Plasmopara viticola. Three of the collected bacteria, that previous tests suggested as potentially good Plasmopara viticolaantagonists, were sprayed on Cabernet sauvignon leaves at 107 CFU ml-1 48 hours before leaf infection with Plasmopara viticola at 106 sporangia ml-1. A gene expression analysis of Plasmopara viticola effectors PvRxLR28 and PvRxLR67, performed through quantitative PCR, revealed an impairment in the expression levels of the two genes in treated leaves compared with control leaves. These results suggest these bacteria as potential BCAs against Plasmopara viticola. Further transcriptomic analysis will be performed to investigate bacterial effects on the expression of multiple Plasmopara viticola pathogenicity genes.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Camilla Mandorino1,2*, Antonella Salerno1,4, Annalisa Prencipe2, Marco Vendemia1, Flavia Angela Maria Maggiolini1, Maria Francesca Cardone1, Andreia Figueiredo3, Antonio Domenico Marsico1, Carlo Pazzani2

1 CREA – Viticulture and Enology, Turi, Italy
2Department of Biosciences, Biotechnology and Environment, University of Bari “A. Moro”, Bari, Italy
3 Biosystems and Integrative Sciences Institute (BioISI), Plant Biology Department, Science Faculty of Lisbon University, Lisbon, Portugal
4 Department of Soil, Plant and Food Science, University of Bari “A. Moro”, Bari, Italy

Contact the author*

Keywords

native vineyard bacteria, biological control agents, Plasmopara viticola, Vitis vinifera, RxLR effectors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Phenolic and volatile profiles of south tyrolean pinot blanc musts and young wines

AIM. Assess the impact of different vineyards and winemaking variables on the phenolic and volatile profiles of Pinot Blanc musts and young wines from South Tyrol.

Heatwaves and grapevine yield in the Douro region, crop model simulations

Heatwaves or extreme heat events can be particularly harmful to agriculture. Grapevines grown in the Douro winemaking region are particularly exposed to this threat, due to the specificities of the already warm and dry climatic conditions. Furthermore, climate change simulations point to an increase in the frequency of occurrence of these extreme heat events, therefore posing a major challenge to winegrowers in the Mediterranean type climates. The current study focuses on the application of the STICS crop model to assess the potential impacts of heatwaves in grapevine yields over the Douro valley winemaking region. For this purpose, STICS was applied to grapevines using high-resolution weather, soil and terrain datasets over the Douro. To assess the impact of heatwaves, the weather dataset (1989-2005) was artificially modified, generating periods with anomalously high temperatures (+5 ºC), at certain onset dates and with specific durations (from 5 to 9 days). The model was run with this modified weather dataset and results were compared to the original unmodified runs. The results show that heatwaves can have a very strong impact on grapevine yields, strongly depending on the onset dates and duration of the heatwaves. The highest negative impacts may result in a decrease in the yield by up to -35% in some regions. Despite some uncertainties inherent to the current modelling assessment, the present study highlights the negative impacts of heatwaves on viticultural yields in the Douro region, which is critical information for stakeholders within the winemaking sector for planning suitable adaptation measures.

Comparison between the volatile chemical profile of two different blends for PDO “Valpolicella Superiore”

Valpolicella is a famous wine producing region located in the north of Verona close to Garda lake and owes its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. Nowadays the production of another PDO, Valpolicella Superiore is gaining more attention by the consumers, increasing the interest of the wineries to improve the quality of this wines