terclim by ICS banner
IVES 9 IVES Conference Series 9 Open-GPB 9 Open-GPB-2024 9 Flash - Biotic interactions 9 Study of the effect of native vineyard bacteria on the expression of Plasmopara viticolaeffectors

Study of the effect of native vineyard bacteria on the expression of Plasmopara viticolaeffectors

Abstract

Downy mildew, caused by the oomycete Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni, is one of the most destructive grapevine diseases mostly affecting Vitis vinifera L. and impacting on viticulture. The pathogen invasion can induce in grapevine multiple defense reactions, first PAMP-Triggered Immunity and secondly Effector-Triggered Immunity. Plasmopara viticola can overcome these defense mechanisms through the secretion of effectors, such as RxLR, into the plant cells, making it easier for the oomycete to infect grapevines.  Currently, the use of chemical pesticides remains the most effective way to control the pathogen with severe negative side effects on the environment and animal health. Consequently, great attention has been recently paid to identifying new Biological Control Agents (BCAs). At CREA Viticulture and Enology, 47 bacterial isolates were collected from the leaves of three Vitis vinifera cultivars, Blush, Dawn seedless and Argentina, showing different degrees of tolerance to Plasmopara viticola. Three of the collected bacteria, that previous tests suggested as potentially good Plasmopara viticolaantagonists, were sprayed on Cabernet sauvignon leaves at 107 CFU ml-1 48 hours before leaf infection with Plasmopara viticola at 106 sporangia ml-1. A gene expression analysis of Plasmopara viticola effectors PvRxLR28 and PvRxLR67, performed through quantitative PCR, revealed an impairment in the expression levels of the two genes in treated leaves compared with control leaves. These results suggest these bacteria as potential BCAs against Plasmopara viticola. Further transcriptomic analysis will be performed to investigate bacterial effects on the expression of multiple Plasmopara viticola pathogenicity genes.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Camilla Mandorino1,2*, Antonella Salerno1,4, Annalisa Prencipe2, Marco Vendemia1, Flavia Angela Maria Maggiolini1, Maria Francesca Cardone1, Andreia Figueiredo3, Antonio Domenico Marsico1, Carlo Pazzani2

1 CREA – Viticulture and Enology, Turi, Italy
2Department of Biosciences, Biotechnology and Environment, University of Bari “A. Moro”, Bari, Italy
3 Biosystems and Integrative Sciences Institute (BioISI), Plant Biology Department, Science Faculty of Lisbon University, Lisbon, Portugal
4 Department of Soil, Plant and Food Science, University of Bari “A. Moro”, Bari, Italy

Contact the author*

Keywords

native vineyard bacteria, biological control agents, Plasmopara viticola, Vitis vinifera, RxLR effectors

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Conventional and alternative pest management strategies: a comparative proteomic study on musts

In a context of sustainable agriculture, “agroecological immunity” is an emerging concept to reduce the use of chemical pesticides to protect crops against pathogens. This alternative strategy aims to combine different levers including the use of “bio”solutions. These include biocontrol products, some of which being plant defense elicitors, as well as products authorized in organic farming such as copper or sulfur. In vineyards, depending on climate conditions, powdery and downy mildews can be devastating diseases.

Wine chemical markers assess nitrogen levels in original grape juice

Nitrogen (N) nutrition of the vineyard plays a crucial role in the composition of must and wine, impacting fermentation, as well as the aroma and taste of the final product. N-deficient grape juice can result in increased astringency and bitterness, and a decrease in pleasant aromas in the wine.

Projected impacts of climate change on viticulture over France wine-regions using downscalled CMIP6 multi-model data

Winegrape is a crop for which the quality and the identity of the final product depends strongly on the
climatic conditions of the year. By impacting production systems and the way in which wines are
developed, climate change represents a major challenge for the wine industry (Ollat et al., 2021).

Transcriptomic and metabolomic responses to wounding and grafting in grapevine

Grafting plants uses intrinsic healing processes to join two different plants together to create one functional organism. To further our understanding of the molecular changes occurring during graft union formation in grapevine, we characterized the metabolome and transcriptome of intact and wounded cuttings (with and without buds to represent scions and rootstocks respectively), and homo- and heterografts at 0 and 14 days after wounding/grafting. As over-wintering, dormant plant material was grafted, we also characterized the gene expression changes in the wood during bud burst and spring activation of growth. We observed an asymmetrical pattern of gene expression between above and below the graft interface, auxin and sugar related genes were up-regulated above the graft interface, while genes involved in stress responses were up-regulated below the graft interface.

Image based vineyard yield prediction using empirical models to estimate bunch occlusion by leaves

Vineyard yield estimation brings several advantages to the entire wine industry. It can provide useful information to support decision making regarding bunch thinning practices, harvest logistics and marketing strategies, as well as to manage stored wine and cellar tanks allocation. Today, this estimation is performed mainly using manual methods based on destructive bunch sampling.