terclim by ICS banner
IVES 9 IVES Conference Series 9 Spatial variability of grape berry maturation program at the molecular level 

Spatial variability of grape berry maturation program at the molecular level 

Abstract

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening. The relationships between NDVI and ground measurements were explored by correlation analysis and revealed high variability in the vineyard. Comparison between the transcriptome data of spots with the highest and lowest NDVI values unraveled 968 differentially expressed genes. Among them, were ripening-related genes, found to feature the low vigor spots, and genes involved in photosynthesis mechanisms that were prevalent in the high vigor spots. Spatial variability maps of the expression level of key berry ripening genes showed consistent patterns, aligned with the vineyard vigor map and with spatial maps generated for several vine and berry parameters. These insights suggest that berries from different vigor zones present distinct molecular maturation programs, hence, showing potential in predicting spatial variability in fruit quality.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Ron Shmuleviz1*, Alessandra Amato1, Pietro Previtali2, Elizabeth Green2, Luis Sanchez2, Maria Mar Alsina2, Nick Dokoozlian2, Giovanni Battista Tornielli1,3 and Marianna Fasoli1

1 Department of Biotechnology, University of Verona, 37134 Verona (VR), Italy
2 E. & J. Gallo Winery, Modesto, CA 95354, USA
3 Current address: Department of Agronomy, Food, Natural resources, Animals and  Environment, University of Padova, 35020 Legnaro (PD), Italy.

Contact the author*

Keywords

berry ripening, vegetation indices, gene expression analysis, sensors, precision viticulture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Unexpected relationships between δ13C, water deficit, and wine grape performance

Water nutrition is crucial for wine grape performance. Thus soil investigation aims at characterizing spatial and temporal variability of available water. A possible strategy

USING CHECK-ALL-THAT-APPLY (CATA) TO CATEGORIZE WINES: A DECISION-MAKING TOOL FOR WINE SELECTION

Bordeaux is the largest appellation vineyard in France. This contrasting vineyard with varied terroirs offers all styles of wine, resulting from the blending of several grape varieties. If these different profiles make the renown of Bordeaux wines, it can appear as a constraint when the aim is to study Bordeaux wines in their diversity. The selection of a representative sample can be performed by a sensory analysis carried out by trained panelists or by wine professionals, which can take several forms: consensus among experts, conventional descriptive analysis, typicality or quality evaluation. However, because of time, economic, and logistical constraints, these methods have limited applications. As an alternative to classical descriptive analysis, more intuitive methods that do not require training have been proposed recently to describe wines using an expert panel such as Napping, Free Choice or Flash Profiling, CATA or RATA.

Study of the sensory dimension of the wine typicality related to a terroir and crossing with their viticultural and oenological characteristics

The typicality of a product can be characterized by properties of similarity in relation to a type, but also by the properties of distinction.

Ellagitannin profile of red and white wines aged with oak chips

Wine aging with oak chips is nowadays a common alternative to barrel aging, aiming to improve wine quality through the fast extraction of wood derived compounds. From the pool of wood phenols, ellagitannins have been reported to have the most significant impact on the wine’s organoleptic profile. Their final concentration in wines is influenced by several factors, with toasting level considered as one of the most important.

Geospatial technologies in spatially defined viticulture: case study of a vineyard with Agiorgitiko variety in Koutsi, Nemea, Greece

Geospatial technologies have significant contribution to viticulture, especially in small-scale vineyards, which require precise management. Geospatial data collected by modern technologies, such as Unmanned Aerial Vehicle (UAV) and satellite imagery, can be processed by modern software and easily be stored and transferred to GIS environments, highlighting important information about the health of vine plants, the yield of grapes and the wine, especially in wine-making varieties. The identification of field variability is very important, particularly for the production of high quality wine. Modern geospatial data management technologies are used to achieve an easy and effortless localization of the fields’ variability.