terclim by ICS banner
IVES 9 IVES Conference Series 9 Spatial variability of grape berry maturation program at the molecular level 

Spatial variability of grape berry maturation program at the molecular level 

Abstract

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening. The relationships between NDVI and ground measurements were explored by correlation analysis and revealed high variability in the vineyard. Comparison between the transcriptome data of spots with the highest and lowest NDVI values unraveled 968 differentially expressed genes. Among them, were ripening-related genes, found to feature the low vigor spots, and genes involved in photosynthesis mechanisms that were prevalent in the high vigor spots. Spatial variability maps of the expression level of key berry ripening genes showed consistent patterns, aligned with the vineyard vigor map and with spatial maps generated for several vine and berry parameters. These insights suggest that berries from different vigor zones present distinct molecular maturation programs, hence, showing potential in predicting spatial variability in fruit quality.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Ron Shmuleviz1*, Alessandra Amato1, Pietro Previtali2, Elizabeth Green2, Luis Sanchez2, Maria Mar Alsina2, Nick Dokoozlian2, Giovanni Battista Tornielli1,3 and Marianna Fasoli1

1 Department of Biotechnology, University of Verona, 37134 Verona (VR), Italy
2 E. & J. Gallo Winery, Modesto, CA 95354, USA
3 Current address: Department of Agronomy, Food, Natural resources, Animals and  Environment, University of Padova, 35020 Legnaro (PD), Italy.

Contact the author*

Keywords

berry ripening, vegetation indices, gene expression analysis, sensors, precision viticulture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.

Entre ce que les consommateurs disent, ce qu’ils apprécient et ce qu’ils achètent… où se situent les vins de chasselas ?

Originaire du bassin lémanique, le chasselas est l’emblème de la viticulture suisse. Pour autant, les surfaces de chasselas n’ont cessé de diminuer, passant de 6’585 hectares en 1986 à près de 3’600 aujourd’hui, reflet d’une baisse de consommation. Une récente étude a cherché à comprendre les raisons de ce désintérêt. Réalisée dans

Sensory characterisation and consumer perspectives of Australian Cabernet Sauvignon wine typicity

Aim: To identify the sensory attributes responsible for the typicity of Cabernet Sauvignon wines from three Australian Geographical Indications (GIs) and to explore consumer purchase behaviour and preference with regard to regional wines.

Targeted and untargeted 1H-NMR analysis for sparkling wine’s authenticity

Studies on wineomics (wine’s metabolome) have increased considerably over the last two decades. Wine results from many environmental, human and biological factors leading to a specific metabolome for each terroir. NMR metabolomics is a particularly effective tool for studying the metabolome since it allows the rapid and simultaneous detection of major compounds from several chemical families.1 Quantitative NMR has already proven its effectiveness in monitoring the authenticity of still wines.

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.