terclim by ICS banner
IVES 9 IVES Conference Series 9 Spatial variability of grape berry maturation program at the molecular level 

Spatial variability of grape berry maturation program at the molecular level 

Abstract

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening. The relationships between NDVI and ground measurements were explored by correlation analysis and revealed high variability in the vineyard. Comparison between the transcriptome data of spots with the highest and lowest NDVI values unraveled 968 differentially expressed genes. Among them, were ripening-related genes, found to feature the low vigor spots, and genes involved in photosynthesis mechanisms that were prevalent in the high vigor spots. Spatial variability maps of the expression level of key berry ripening genes showed consistent patterns, aligned with the vineyard vigor map and with spatial maps generated for several vine and berry parameters. These insights suggest that berries from different vigor zones present distinct molecular maturation programs, hence, showing potential in predicting spatial variability in fruit quality.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Ron Shmuleviz1*, Alessandra Amato1, Pietro Previtali2, Elizabeth Green2, Luis Sanchez2, Maria Mar Alsina2, Nick Dokoozlian2, Giovanni Battista Tornielli1,3 and Marianna Fasoli1

1 Department of Biotechnology, University of Verona, 37134 Verona (VR), Italy
2 E. & J. Gallo Winery, Modesto, CA 95354, USA
3 Current address: Department of Agronomy, Food, Natural resources, Animals and  Environment, University of Padova, 35020 Legnaro (PD), Italy.

Contact the author*

Keywords

berry ripening, vegetation indices, gene expression analysis, sensors, precision viticulture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Circular economy strategies to reintegrate grape pomace from cv. Lagrein into the food chain

The project REALISM (regionality and circular economy in food products to counteract the Metabolic Syndrome (M.S.)) was initiated to develop antioxidant-rich food products with the ability to reduce the risk of developing the M.S.

Study and valorization of vineyards “terroirs” of A.O.C. Cahors (Lot, France)

In the current context of market competition and consumption evolution, it is necessary to produce wines of a genuine typicity. The Terroir represents an unique and irreproducible inheritance that can be valorized through the origin and the sensory characteristics of the wines.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

AIM: ‘Nebbiolo’ (Vitis vinifera L.) is one of the most ancient and prestigious Italian grape cultivars. It is renowned for its use in producing monovarietal high-quality red wines, such Barolo and Barbaresco. Wine quality and value can be heavily modified if cultivars other than those allowed are employed.

The grapevine QTLome is ripe: QTL survey, databasing, and first applications

Overarching surveys of QTL (Quantitative Trait Loci) studies in both model plants and staple crops have facilitated the access to information and boosted the impact of existing data on plant improvement activities. Today, the grapevine community is ready to take up the challenge of making the wealth of QTL information F.A.I.R.. To ensure that all valuable published data can be used more effectively, the myriad of identified QTLs have to be captured, standardised and stored in a dedicated public database.
As an outcome of the GRAPEDIA initiative, QTL-dedicated experts from around the world have gathered to compile the grapevine QTLome: the complete information (e.g., map positions, associated phenotypes) describing all experimentally supported QTLs for a specific trait.