terclim by ICS banner
IVES 9 IVES Conference Series 9 Spatial variability of grape berry maturation program at the molecular level 

Spatial variability of grape berry maturation program at the molecular level 

Abstract

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening. The relationships between NDVI and ground measurements were explored by correlation analysis and revealed high variability in the vineyard. Comparison between the transcriptome data of spots with the highest and lowest NDVI values unraveled 968 differentially expressed genes. Among them, were ripening-related genes, found to feature the low vigor spots, and genes involved in photosynthesis mechanisms that were prevalent in the high vigor spots. Spatial variability maps of the expression level of key berry ripening genes showed consistent patterns, aligned with the vineyard vigor map and with spatial maps generated for several vine and berry parameters. These insights suggest that berries from different vigor zones present distinct molecular maturation programs, hence, showing potential in predicting spatial variability in fruit quality.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Ron Shmuleviz1*, Alessandra Amato1, Pietro Previtali2, Elizabeth Green2, Luis Sanchez2, Maria Mar Alsina2, Nick Dokoozlian2, Giovanni Battista Tornielli1,3 and Marianna Fasoli1

1 Department of Biotechnology, University of Verona, 37134 Verona (VR), Italy
2 E. & J. Gallo Winery, Modesto, CA 95354, USA
3 Current address: Department of Agronomy, Food, Natural resources, Animals and  Environment, University of Padova, 35020 Legnaro (PD), Italy.

Contact the author*

Keywords

berry ripening, vegetation indices, gene expression analysis, sensors, precision viticulture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Estimation of vineyard leaf area index (LAI) is an important aspect for the winegrowers. However, tracking and monitoring are difficult tasks due to time constraints. Satellite and unmanned aerial vehicle (UAV) imaging have become a practical monitoring method for LAI. Nevertheless, for a proper LAI determination, the image’s spatial resolution is a key factor, since low-resolution images are incapable of distinguishing between adjacent vines due to the large area covered in each pixel, this leads to misinterpretation or generalisation of vineyard information.

Effect of soil texture on early bud burst

Notre objectif est d’étudier de façon précise les relations entre la physiologie de la vigne et le sol, en prenant en compte l’effet millésime. Nous avons plus précisément étudier la précocité de débourrement de la vigne (stade D) en fonction de la texture du sol et plus particulièrement de la teneur en éléments grossiers.

Grassland and patch scale diversity in supporting avian diversity and potential ecosystem services

The composition and structure of vineyard landscapes significantly affect bird communities and the ecosystem services they provide in agriculture.

Exploring the potential of agrivoltaics in German vineyards: A GIS-based assessment

The growing demand for renewable energy and sustainable agricultural practices has highlighted the potential of agrivoltaics (Agri-PV) as a promising solution, particularly in the context of German viticulture.