terclim by ICS banner
IVES 9 IVES Conference Series 9 Spatial variability of grape berry maturation program at the molecular level 

Spatial variability of grape berry maturation program at the molecular level 

Abstract

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening. The relationships between NDVI and ground measurements were explored by correlation analysis and revealed high variability in the vineyard. Comparison between the transcriptome data of spots with the highest and lowest NDVI values unraveled 968 differentially expressed genes. Among them, were ripening-related genes, found to feature the low vigor spots, and genes involved in photosynthesis mechanisms that were prevalent in the high vigor spots. Spatial variability maps of the expression level of key berry ripening genes showed consistent patterns, aligned with the vineyard vigor map and with spatial maps generated for several vine and berry parameters. These insights suggest that berries from different vigor zones present distinct molecular maturation programs, hence, showing potential in predicting spatial variability in fruit quality.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Ron Shmuleviz1*, Alessandra Amato1, Pietro Previtali2, Elizabeth Green2, Luis Sanchez2, Maria Mar Alsina2, Nick Dokoozlian2, Giovanni Battista Tornielli1,3 and Marianna Fasoli1

1 Department of Biotechnology, University of Verona, 37134 Verona (VR), Italy
2 E. & J. Gallo Winery, Modesto, CA 95354, USA
3 Current address: Department of Agronomy, Food, Natural resources, Animals and  Environment, University of Padova, 35020 Legnaro (PD), Italy.

Contact the author*

Keywords

berry ripening, vegetation indices, gene expression analysis, sensors, precision viticulture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).

Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

The study was carried out in 2006 with Merlot grapes from vines grown using the trellis system, where four treatments were compared with different levels of water stress.

Evaluation de différents clones du Chardonnay pendant la maturation dans un terroir viticole du Friuli-Venezia Glulia (Nord-Est de l’Italie)

La diffusion récente et “explosive” du Chardonnay dans pratiquement toutes les zones de culture viticole du monde a fait penser, à tort, que cette variété s’adapte facilement à toutes les conditions pédo-climatiques ou presque. Cette thèse a été confirmée par la grande faculté d’adaptation dont a fait preuve le vignoble et par la popularité dont jouit le vin auprès des consommateur du monde entier.

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time.