OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 May lactic acid bacteria play an important role in sparkling wine elaboration?

May lactic acid bacteria play an important role in sparkling wine elaboration?

Abstract

The elaboration of sparkling wine is a demanding process requiring technical as well as scientific skills. Uncovering the role of the terroir to the final product quality is of great importance for the wine market. 

Although the impact of the yeast strains and their metabolites on the final product quality is well documented, the action of bacteria still remains unknown. The malolactic fermentation (MLF) is carried out by the lactic acid bacteria after the alcoholic fermentation in order to ensure the microbial stability during the second fermentation that takes place in the bottle or in tanks. Oenococcus oeni is the only selected species to drive MLF that has been commercialized for sparkling wine elaboration and it is naturally present on grapes, in the cellar and also in the final product. However, whether the bacterial strain contributes to the sensory characteristics of sparkling wine is still questioned. The present work focuses on the population diversity of lactic acid bacteria isolated from two sparkling wine production regions: the famous Champagne in France and the rising region of Amyntaion in North of Greece. The molecular typing method of multiple loci VNTR analysis was used to type the bacterial strains based on five tandem repeats loci was used in the present work. According to our results the bacterial strains isolated from sparkling wine production regions are usually differentiated from the rest by forming distinct genetic subgroups. The adaptation mechanism of the species to the particular conditions of sparkling wine is also reflected at phenotypic level. This observed phenotype can confer selective advantages to the bacteria in such acidic environments as these wines, with potential effects on sparkling wine foamability.

DOI:

Publication date: June 23, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Maria Dimopoulou (1,2), Margot Paulin (1), Olivier Claisse (1), George-John Nychas (2), Marguerite Dols-Lafargue (1,3)

1. Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France 
2. Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece 
3. ENSCBP, Bordeaux INP, 33600 Pessac, France 

Contact the author

Keywords

microbial terroir, sparkling wine, lactic acid bacteria, genetic diversity 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

A comprehensive and accurate annotation for the grapevine T2T genome 

Addressing the opportunities and challenges of genomics methods in grapevine (Vitis vinifera L.) requires the development of a comprehensive and accurate reference genome and annotation. We aimed to create a new gene annotation for the PN40024 grapevine reference genome by integrating the highly accurate and complete T2T assembly and the manually curated PN40024.v4 annotation. Here, we present a novel workflow to enhance the annotation of the T2T genome by incorporating past community input found in PN40024.v4. The pipeline’s containerization will improve the workflow’s reproducibility and flexibility, facilitating its inclusion as a shared workflow on the Grapedia portal, the grapevine genomics encyclopedia.

Simulated climate change in a Mediterranean organic vineyard altered the plant physiology and decreased the vine production

This study focuses on investigating the effects of climate change on the plant physiology and berries of Vitis vinifera cv “Monastrell” in a commercial vineyard managed organically in Southeastern Spain (Jumilla, Murcia). For this purpose, open top chambers and rainout shelters were employed to simulate warming (~2-7 ºC, W) and rainfall reduction (~30%, RR) respectively. Additionally, a combination of both treatments (W+RR) was employed. Vines without either top chambers or rainout shelters were considered as control (C). The experiment was established in February of 2023. Predawn leaf water potential (measured using a pressure chamber), stomatal conductance (assessed with a porometer at mid-morning) and leaf chlorophyll and flavonoid content (measured using the Dualex® leaf clip sensor) were analyzed at veraison (5 months after the installation of structures).

Free and bound terpene profile of recovered minority white grape varieties by GC × GC-TOFMS

Climate change presents a significant challenge for actual viticulture. In this context, recovering minority grape varieties can be a crucial strategy to ensure resilience, particularly those capable of maintaining quality and aromatic complexity under water stress.

Mouthfeel effects due to oligosaccharides within a wine matrix

The mouthfeel of wine is one of the most important aspects of the organoleptic experience of tasting wine. In wine a great deal is known about certain compositional components and how they impact mouthfeel perception, such as phenolics. But there are other components where little is understood, such as oligosaccharides. Saccharides in general are found in very low concentrations with wine, especially compared to conventional foods. There is very little information about how oligosaccharides influence the mouthfeel perception of wine.

Hidden costs of wine: quantifying environmental externalities of organic and integrated management

Agriculture is one of the largest contributors to environmental pollution and causing significant impacts on human health, ecosystems, and resource availability.