Terroir 2016 banner
IVES 9 IVES Conference Series 9 Effects of environmental factors and vineyard pratices on wine flora dynamics

Effects of environmental factors and vineyard pratices on wine flora dynamics

Abstract

The intensification of t vineyard practices led to an impoverishment of the biological diversity. In vineyard management, the reflection to reduce pesticides uses concerns mainly the soil management of the vineyard, and often focuses on flora management in the inter-row. The goal of the present study is to gain more knowledge on the dynamic of vineyard flora, including relationships with environmental factors and soil practices. Assessment of floristic diversity was carried out for 5 fields of the research program PEPSVI in Alsace (France) on an area of 500 m ² within each of the fields. Soil management was either integrated or organic. Within each field, species richness was determined for the row (UR), the grassed inter-row (GIR), and the tilled inter-row (TIR) three times during each vine-growing season in 2014 and 2015. ANOVA tests were performed on data.

First we observed an average of 54 different species in the fields per year and that there are no significant differences between the different soil managements. The highest value belongs to organic soil management. The average species richness in organic fields is the highest in GIR (respectively 21 and 22 species in 2014 and 2015) and in UR (respectively 19 and 18 species in 2014 and 2015) and there is no significant difference between GIR and UR and between 2014 and 2015. The flora developed more considerably in the GIR (22 species) than UR (19 species) and less in TIR (16 species).

The results of the study showed also that superficial tillage i.e. scraping or harrowing, helps flora emergence and increases species richness (21 species in average against 14 in average for the other soil managements). The environment has also to be taken into account. Surrounding vegetation of the field influences significantly the species richness, (30 more species in the year for the most favorable environment). Next steps of the study will be the analysis of distribution of flora families and Raunkiær’s life.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Chantal RABOLIN (1), Christophe SCHNEIDER (1), Christian BOCKSTALLER (1), Marie THIOLLET-SCHOLTUS (2)

(1) INRA- Université de Lorraine – UMR-LAE-1132 68000 Colmar France
(2) INRA – SAD – UR-0055-ASTER, 68000 Colmar France

Contact the author

Keywords

practices, landscape, environmental sustainability, botany, biodiversity

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Colored hail‐nets as a tool to improve vine water status: effects on leaf gas exchange and berry quality in Italia table grape

Protecting table grape vineyards with white hail‐nets is a common practice in Southern Italy. Hail‐nets result in shading effects of 10‐20 %, depending on their density

Survey reveals training needs for airblast sprayer operators

In California, little training in sprayer calibration or pesticide drift management is required to apply pesticides. Yet, there is a need to maximize pesticide efficacy and minimize drift. Therefore, our team is developing a training course on airblast application best practices. We distributed a survey to identify current practices and used importance-performance analysis to interpret responses to the importance of spray related topics and satisfaction with previous training.

VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

Climate change and rising atmospheric carbon dioxide concentration is a concern for agriculture, including viticulture. Studies on elevated carbon dioxide have already been on grapevines, mainly taking place in greenhouses using potted plants or using field grown vines under higher CO2 enrichment, i.e. >650 ppm. The VineyardFACE, located at Hochschule Geisenheim University, is an open field Free Air CO2 Enrichment (FACE) experimental set-up designed to study the effects of elevated carbon dioxide using field grown vines (Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon). As the carbon dioxide fumigation started in 2014, the long term effects of elevated carbon dioxide treatment can be investigated on berry ripening parameters and fruit metabolic composition.
The present study aims to investigate the effect on fruit composition under a moderate increase (+20%; eCO2) of carbon dioxide concentration, as predicted for 2050 on both Riesling and Cabernet Sauvignon. Berry composition was determined for primary (sugars, organic acids, amino acids) and secondary metabolites (anthocyanins). Special focus was given on monitoring of berry diameter and ripening rates throughout three growing seasons. Compared to previous results of the early adaptative phase of the vines [1], our results show little effect of eCO2 treatment on primary metabolites composition in berries. However, total anthocyanins concentration in berry skin was lower for eCO2 treatment in 2020, although the ratio between anthocyanins derivatives did not differ.
[1] Wohlfahrt Y., Tittmann S., Schmidt D., Rauhut D., Honermeier B., Stoll M. (2020) The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon. Applied Science Basel 10: 2486

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

Ultrasound and microwave techniques to accelerate the release of oak wood compounds in wine aging process

Aging process is an essential stage in the improvement of wine quality. This process is usually performed by contact with oak wood whose compounds are released and transferred to wine, acquiring typical aging bouquet. Although the use of oak chips is a practice generally accepted as alternative to barrels to shorten aging process, the application of emerging technologies is being unfolded to accelerate this stage.