Terroir 2016 banner
IVES 9 IVES Conference Series 9 Effects of environmental factors and vineyard pratices on wine flora dynamics

Effects of environmental factors and vineyard pratices on wine flora dynamics

Abstract

The intensification of t vineyard practices led to an impoverishment of the biological diversity. In vineyard management, the reflection to reduce pesticides uses concerns mainly the soil management of the vineyard, and often focuses on flora management in the inter-row. The goal of the present study is to gain more knowledge on the dynamic of vineyard flora, including relationships with environmental factors and soil practices. Assessment of floristic diversity was carried out for 5 fields of the research program PEPSVI in Alsace (France) on an area of 500 m ² within each of the fields. Soil management was either integrated or organic. Within each field, species richness was determined for the row (UR), the grassed inter-row (GIR), and the tilled inter-row (TIR) three times during each vine-growing season in 2014 and 2015. ANOVA tests were performed on data.

First we observed an average of 54 different species in the fields per year and that there are no significant differences between the different soil managements. The highest value belongs to organic soil management. The average species richness in organic fields is the highest in GIR (respectively 21 and 22 species in 2014 and 2015) and in UR (respectively 19 and 18 species in 2014 and 2015) and there is no significant difference between GIR and UR and between 2014 and 2015. The flora developed more considerably in the GIR (22 species) than UR (19 species) and less in TIR (16 species).

The results of the study showed also that superficial tillage i.e. scraping or harrowing, helps flora emergence and increases species richness (21 species in average against 14 in average for the other soil managements). The environment has also to be taken into account. Surrounding vegetation of the field influences significantly the species richness, (30 more species in the year for the most favorable environment). Next steps of the study will be the analysis of distribution of flora families and Raunkiær’s life.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Chantal RABOLIN (1), Christophe SCHNEIDER (1), Christian BOCKSTALLER (1), Marie THIOLLET-SCHOLTUS (2)

(1) INRA- Université de Lorraine – UMR-LAE-1132 68000 Colmar France
(2) INRA – SAD – UR-0055-ASTER, 68000 Colmar France

Contact the author

Keywords

practices, landscape, environmental sustainability, botany, biodiversity

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Evaluation of uhph treatment as an alternative to heat treatment prior to the use of proteolytic enzymes on must to achieve protein stability in wine

There are currently enzyme preparations on the market with specific protease activities capable of degrading unstable must proteins and preventing turbidity in white and rosé wines. The main drawback is the need to heat the must at 75ºc for 1-2 minutes to denature the proteins and facilitate enzyme action.

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha.

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Grapevine nitrogen dynamics as a function of crop thinning

Context and purpose. Nitrogen (N) is crucial for plant development but is used inefficiently, with only 30–40% of the fertilizer assimilated by crops, leading to significant environmental losses.