Terroir 2016 banner
IVES 9 IVES Conference Series 9 Which risk assessment of water quality in pdo vineyards in Burgundy (France)?

Which risk assessment of water quality in pdo vineyards in Burgundy (France)?

Abstract

To meet the demand of assessment tool of water managers we adapted to the vine production the INDIGO® method to developed initially for arable farming at the field scale. This article aims to assess the quality of water in Burgundy areas where viticulture is pointed out to downgrade quality of surface water and groundwater. Knowing production practices at field scale allow locating where changes of production practices could upgrade surface water and groundwater quality.

INDIGO® I-phy indicator of sustainability were built based on different aggregation methods of winegrowers practices and field characteristics with a mark between 0 (risk maximum) and 10 (no risk) and 7 is the acceptable limit for environment. Water modules of I-Phy were tested in three PDO vineyards in Burgundy, in two climate conditions (2011 and 2012). Calculations have been done for I-phy indicator and groundwater (ESO) and surface water (ESU) modules on 32 fields, equally distributed in very high quality and regular quality PDO areas and in integrated or organic/biodynamic systems.

The results lead us to assess water pollution risk in different vineyard conditions. Global risk for environment is low: a very few fields under 7: 6 in 2011 and 7 in 2012 which one field under 3. Most of the global risky fields are in PDO-Rully area.

ESO risk is higher than ESU risk for almost all the fields in the 3 PDO areas. There are 4 reasons explaining the results: (i) active ingredients in used pesticides, even for organic. Active ingredient are classed R50/53. (ii) rate of the active ingredient. (iii) vine growing period of application. (iv) at least, the slope of the fields, the length of the rows, the proximity of a river and the rate of clay in the soil are also important risk factors for ESO risk. Winegrowers in Burgundy are aware of ESO risk and already manage to reduce rate of pesticides and chose the right moment to treat the vine according to the field characteristics.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Marie THIOLLET-SCHOLTUS (1), Katia PIDORENKO (2), Claire PERNET (2)

(1) INRA – SAD – UR-0055-ASTER, 28, rue de Herrlisheim 68000 Colmar France
(2) BIVB, 16, rue du 16e chasseur, 21200 Beaune, France

Contact the author

Keywords

Practices, PDO vineyards, groundwater quality, surface water quality, environmental assessment, INDIGO®

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Context and purpose of the study – Vine development, and hence management, depends on dynamic factors (climate, soil moisture, cultural practices etc.) whose impact can vary depending upon their temporal modalities.

Applications of FTIR microspectroscopy in oenology: shedding light on Saccharomyces cerevisiae cell wall composition and autolytic capacity

Many microbial starters for the alcoholic and malolactic fermentation processes are commercially available, indicated for diverse wine styles and quality goals. The screening protocols cover a wide range of oenologically relevant features, although some characteristics could also be studied using underexplored powerful techniques. In this study, we applied Fourier Transform Infrared (FTIR) microspectroscopy [1,2] to compare the cell wall biochemical composition and monitor the autolytic process in several wine strains of Saccharomyces cerevisiae.

Relationship between soil and grapevine variety in the wineyard of Jura: example for the “Trousseau” variety from the “Terroir” of Montigny-Lès-Arsures (France)

Seven plots located in the commune of Montigny-lès-Arsures (Jura, 39), planted with grapevine varieties Trousseau and Savagnin, were chosen for a study of soil pits and a distribution of major and trace chemical elements in soils and wines. It was shown that the mineral matrix of the soil reflects the geological substratum and the sub-surface alteration process, while the organic soil matrix depends on agro-viticultural practices.

Characterization of tannins and prevention of light-struck taste: the enofotoshield project

Hydrolysable tannins resulted effective against the formation of light-struck taste (LST) in model wine [1]. The first activity of Enofotoshield project is to evaluate the effectiveness of tannins

‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate.