Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing soils, topographic diversity 9 The effect of pedoclimatic conditions on the yeast assimilable nitrogen concentration on white cv. Doral in Switzerland

The effect of pedoclimatic conditions on the yeast assimilable nitrogen concentration on white cv. Doral in Switzerland

Abstract

Aims: Agroscope investigated the efficiency of nitrogen fertilization via foliar urea application at veraison with the aim of raising the YAN (yeast assimilable nitrogen) content in the musts. The observations were conducted on the white grapevine cultivar Doral (Chasselas x Chardonnay) in several pedoclimatic conditions of the Leman wine region, Switzerland, in the years 2012 and 2013. Knowing that the YAN in must plays a key role in wine quality, the aim was finding the main parameters affecting the final YAN level in order to better control them.

Methods and results: Five plots of Doral were chosen over 80 km of vineyards. Pedologic profiles were realised. Vegetal materials, date of plantation and cultivation practices were kept constant for comparison purposes. Each plot was divided in two treatments of 60 vines each: a control treatment and a nitrogen fertilized treatment (20 kg/ha as foliar urea applied at veraison). Phenological development, nitrogen status and grape maturation of vines were monitored. 50 kg of grapes were harvested in each treatment. Musts were analysed after crushing and then vinified separately using a standard protocol. Wines were then analysed and tasted by an expert panel. Strong vintage and site effects were pointed out. YAN levels in musts were significantly affected by nitrogen fertilization. YAN gain in must was 56 ± 31 mg/L average. YAN gain between control and fertilised treatments was globally higher in 2013. Some sites consistently presented higher gains. The soil seemed to mainly affect vine nitrogen status by its water holding capacity and its effective root zone depth. No correlation could be established between initial leaf N content and the variation of YAN gain. YAN in must was the parameter that best explained the positive variations in wine sensory characteristics, although not always significant.

Significance and impact of the study: This work has so far confirmed that YAN level in must, in relation to climate and soil characteristics, contributes to the terroir effect on the wine quality. YAN concentration is clearly influenced by pedoclimatic conditions (i.e. vintage and site). The study is ongoing in 2014 in order to better understand which parameters in the vineyard we could optimize with the aim of raising up the YAN level in musts.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Thibaut VERDENAL (1), Vivian ZUFFEREY (1), Stéphane BURGOS2, Johannes RÖSTI1, Fabrice LORENZINI3, Agnès DIENES-NAGY3, Katia GINDRO1, Jean-Laurent SPRING1 and Olivier VIRET1

(1) Institute for Plant Production Sciences, Agroscope, 1009 Pully, Switzerland
(2) Changins, 1260 Nyon, Switzerland 
(3) Institute for Food Sciences, Agroscope, 1260 Nyon, Switzerland 

Contact the author

Keywords

terroir, yeast assimilable nitrogen YAN, leaf urea fertilisation, wine quality, terroir

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Grapevine nitrogen status: correlation between chlorophyll indices n-tester and spadGrapevine nitrogen status

Knowledge of the nitrogen nutrition status of grapevines is essential for the sustainable management of their nutrition for the production of quality grapes. The measurement of the chlorophyll index is a rapid, non-destructive and relatively inexpensive method that provides a good approximation of the nitrogen nutrition status of the vine during the season. Interpretation thresholds are currently insufficient or non-existent for some chlorophyll meters. Ideally, they should be available for each variety and each phenological stage. In order to popularize the use of chlorophyll-meters, measurements were carried out at Agroscope in Switzerland to establish the correlation between the indices obtained by the devices N-tester and SPAD 502.

Flooding responses on grapevine: a physiological, transcriptional and metabolic perspective

Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted.

French wine sector facing climate change (part. 1): A national strategy built on a foresight and participatory approach

A foresight study was carried out by a group of experts from INRAE, universities, INAO and FranceAgriMer from 2014 as part of the multidisciplinary “laccave” project intended to anticipate climate change in the French wine industry. The initial objective was to initiate an interdisciplinary dialogue between researchers and to feed their questions in a more systemic way. The scenario development method made it possible to build possible futures for the wine sector in the face of climate change. It began by drafting four adaptation strategies, combining different possible intensities of innovation and relocation of the vineyard.

Proposal for the development of a framework for a globally relevant wine sector climate change adaptation strategy

Climate change is impacting wine production in all parts of the world in highly variable ways that may change the expression of terroir, from rapid loss of viability right through to highly beneficial aspects that increase suitability

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.