Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing soils, topographic diversity 9 The effect of pedoclimatic conditions on the yeast assimilable nitrogen concentration on white cv. Doral in Switzerland

The effect of pedoclimatic conditions on the yeast assimilable nitrogen concentration on white cv. Doral in Switzerland

Abstract

Aims: Agroscope investigated the efficiency of nitrogen fertilization via foliar urea application at veraison with the aim of raising the YAN (yeast assimilable nitrogen) content in the musts. The observations were conducted on the white grapevine cultivar Doral (Chasselas x Chardonnay) in several pedoclimatic conditions of the Leman wine region, Switzerland, in the years 2012 and 2013. Knowing that the YAN in must plays a key role in wine quality, the aim was finding the main parameters affecting the final YAN level in order to better control them.

Methods and results: Five plots of Doral were chosen over 80 km of vineyards. Pedologic profiles were realised. Vegetal materials, date of plantation and cultivation practices were kept constant for comparison purposes. Each plot was divided in two treatments of 60 vines each: a control treatment and a nitrogen fertilized treatment (20 kg/ha as foliar urea applied at veraison). Phenological development, nitrogen status and grape maturation of vines were monitored. 50 kg of grapes were harvested in each treatment. Musts were analysed after crushing and then vinified separately using a standard protocol. Wines were then analysed and tasted by an expert panel. Strong vintage and site effects were pointed out. YAN levels in musts were significantly affected by nitrogen fertilization. YAN gain in must was 56 ± 31 mg/L average. YAN gain between control and fertilised treatments was globally higher in 2013. Some sites consistently presented higher gains. The soil seemed to mainly affect vine nitrogen status by its water holding capacity and its effective root zone depth. No correlation could be established between initial leaf N content and the variation of YAN gain. YAN in must was the parameter that best explained the positive variations in wine sensory characteristics, although not always significant.

Significance and impact of the study: This work has so far confirmed that YAN level in must, in relation to climate and soil characteristics, contributes to the terroir effect on the wine quality. YAN concentration is clearly influenced by pedoclimatic conditions (i.e. vintage and site). The study is ongoing in 2014 in order to better understand which parameters in the vineyard we could optimize with the aim of raising up the YAN level in musts.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Thibaut VERDENAL (1), Vivian ZUFFEREY (1), Stéphane BURGOS2, Johannes RÖSTI1, Fabrice LORENZINI3, Agnès DIENES-NAGY3, Katia GINDRO1, Jean-Laurent SPRING1 and Olivier VIRET1

(1) Institute for Plant Production Sciences, Agroscope, 1009 Pully, Switzerland
(2) Changins, 1260 Nyon, Switzerland 
(3) Institute for Food Sciences, Agroscope, 1260 Nyon, Switzerland 

Contact the author

Keywords

terroir, yeast assimilable nitrogen YAN, leaf urea fertilisation, wine quality, terroir

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Thermal conditions during the grape ripening period in viticulture geoclimate. Cool night index and thermal amplitude

Le régime thermique en période de maturation du raisin est l’une des variables déterminantes de la coloration du raisin et de la richesse en arômes, anthocyanes et polyphénols des vins.

Above and below: soil moisture and soil temperature interact to alter grapevine water relations

The combined effect of soil moisture and soil temperature on grapevine physiology is gaining interest in the context of global warming.

Unraveling vineyard site from vintage contributions: Elemental composition of site-specific Pinot noir wines across multiple vintages

Understanding vineyard site contribution to elemental composition of wines has, historically, been limited due to lack of continuity across multiple vintages, as well as lack of uniformity in scion clone and lack of controlled pilot-scale winemaking conditions.  We recently completed our fifth vintage, and have elemental composition characterizing wines from four vintages (2015–2018)

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

Characterization of bunch compactness and identification of associated genes in a diverse collection of cultivars of Vitis vinifera L.

Compactness is a complex trait of V. vinifera L. and is defined ultimately by the portion of free space within the bunch which is not occupied by the berries. A high degree of compactness results in poor ventilation and consequently a higher susceptibility to fungal diseases, diminishing the quality of the fruit. The easiness to conceptualize the trait and its importance arguably contrasts with the difficulty to measure and quantify it. However, recent technical advancements have allowed to study this attribute more accurately over the last decade. Our main objective was to explore the underlying genetics determining bunch compactness by applying updated phenotyping methods in a collection of V. vinifera L. cultivars with a wide genetic diversity.