Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing soils, topographic diversity 9 The effect of pedoclimatic conditions on the yeast assimilable nitrogen concentration on white cv. Doral in Switzerland

The effect of pedoclimatic conditions on the yeast assimilable nitrogen concentration on white cv. Doral in Switzerland

Abstract

Aims: Agroscope investigated the efficiency of nitrogen fertilization via foliar urea application at veraison with the aim of raising the YAN (yeast assimilable nitrogen) content in the musts. The observations were conducted on the white grapevine cultivar Doral (Chasselas x Chardonnay) in several pedoclimatic conditions of the Leman wine region, Switzerland, in the years 2012 and 2013. Knowing that the YAN in must plays a key role in wine quality, the aim was finding the main parameters affecting the final YAN level in order to better control them.

Methods and results: Five plots of Doral were chosen over 80 km of vineyards. Pedologic profiles were realised. Vegetal materials, date of plantation and cultivation practices were kept constant for comparison purposes. Each plot was divided in two treatments of 60 vines each: a control treatment and a nitrogen fertilized treatment (20 kg/ha as foliar urea applied at veraison). Phenological development, nitrogen status and grape maturation of vines were monitored. 50 kg of grapes were harvested in each treatment. Musts were analysed after crushing and then vinified separately using a standard protocol. Wines were then analysed and tasted by an expert panel. Strong vintage and site effects were pointed out. YAN levels in musts were significantly affected by nitrogen fertilization. YAN gain in must was 56 ± 31 mg/L average. YAN gain between control and fertilised treatments was globally higher in 2013. Some sites consistently presented higher gains. The soil seemed to mainly affect vine nitrogen status by its water holding capacity and its effective root zone depth. No correlation could be established between initial leaf N content and the variation of YAN gain. YAN in must was the parameter that best explained the positive variations in wine sensory characteristics, although not always significant.

Significance and impact of the study: This work has so far confirmed that YAN level in must, in relation to climate and soil characteristics, contributes to the terroir effect on the wine quality. YAN concentration is clearly influenced by pedoclimatic conditions (i.e. vintage and site). The study is ongoing in 2014 in order to better understand which parameters in the vineyard we could optimize with the aim of raising up the YAN level in musts.

DOI:

Publication date: July 31, 2020

Issue: Terroir 2014

Type: Article

Authors

Thibaut VERDENAL (1), Vivian ZUFFEREY (1), Stéphane BURGOS2, Johannes RÖSTI1, Fabrice LORENZINI3, Agnès DIENES-NAGY3, Katia GINDRO1, Jean-Laurent SPRING1 and Olivier VIRET1

(1) Institute for Plant Production Sciences, Agroscope, 1009 Pully, Switzerland
(2) Changins, 1260 Nyon, Switzerland 
(3) Institute for Food Sciences, Agroscope, 1260 Nyon, Switzerland 

Contact the author

Keywords

terroir, yeast assimilable nitrogen YAN, leaf urea fertilisation, wine quality, terroir

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Appliance of climate projections for climate change study in Serbian vineyard regions

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate

VITOUR – The European World Heritage Vineyards

UNESCO World Heritage as the link, Europe as the area covered. VITOUR network is born on this idea, on Loire Valley Mission and InterLoire’s initiative. It gathers vineyards inscribed on UNESCO World Heritage List.

HPLC-based quantification of elemental sulfur in grape juice

Elemental sulfur is commonly used in vineyards as a fungicide to prevent diseases and protect grapevines.1 The challenges of climate change are intensifying disease pressure, further increasing the reliance on sulfur use. Understanding the range of potential impacts of residual sulfur during the winemaking process is becoming increasingly important.

Green Vineyards: skills development for wine industry personnel: responding to the challenges of climate change

A fair and sustainable society, with a modern, resource-efficient and competitive economy cannot be achieved without a workforce to support it.